Vol. 26
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-01-17
A Selective Linear Transceiver Design Over Correlated Large-MIMO Channels
By
Progress In Electromagnetics Research C, Vol. 26, 259-273, 2012
Abstract
With tens or an even larger number of antennas utilized, large-MIMO systems have many potential merits. However, there are also some difficulties with its practical realization. For example, the feedback overhead caused by sending back a large precoding matrix is heavy. In this paper, we propose a selective linear transceiver scheme to reduce the overwhelming feedback overhead in correlated large-MIMO systems. In line with the required reduced amount of feedback, antennas which can provide a potentially large diversity gain are firstly chosen independently of the actual channel realization. The transceiver is then designed over correlated MIMO channels in an iterative way to minimize the sum of detection errors under the transmit power constraint. Although optimal solutions for the case of full transceiver have been given under some special scenarios, we modify them to improve the BER performance of systems. Monte-Carlo simulation results verify that the proposed selective linear transceiver is a useful scheme in large-MIMO systems to provide a tradeoff between performance and feedback overhead.
Citation
Fengyong Qian, Ruikai Mai, Yuesheng Zhu, and Hui Li, "A Selective Linear Transceiver Design Over Correlated Large-MIMO Channels," Progress In Electromagnetics Research C, Vol. 26, 259-273, 2012.
doi:10.2528/PIERC11120513
References

1. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wirel. Pers. Commun., Vol. 6, Mar. 1998.
doi:10.1023/A:1008889222784

2. Vardhan, K. V., S. K. Mohammed, A. Chockalingam, and B. S. Rajan, "A low-complexity detector for large MIMO systems and multicarrier CDMA systems," IEEE J. Sel. Areas Commun., Vol. 26, 473-485, 2008.
doi:10.1109/JSAC.2008.080406

3. Elnour, B. and D. Erricolo, "A novel colocated cross-polarized two-loop PCB antenna in the ISM 2.4-GHz band," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 1237-1240, 2010.
doi:10.1109/LAWP.2010.2104131

4. Krairiksh, M., P. Keowsawat, C. Phongcharoenpanich, and S. Kosulvit, "Two-probe excited circular ring antenna for MIMO application," Progress In Electromagnetics Research, Vol. 97, 417-431, 2009.
doi:10.2528/PIER09091607

5. Chung, J.-Y., T. Yang, and J. Lee, "Low correlation MIMO antennas with negative group delay," Progress In Electromagnetics Research C, Vol. 22, 151-163, 2011.
doi:10.2528/PIERC11051007

6. Palomar, D. P., J. M. Cioffi, and M. A. Lagunas, "Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization," IEEE Trans. Signal Process., Vol. 51, 2381-2401, 2003.
doi:10.1109/TSP.2003.815393

7. Gupta, A. and D. Nagar, Matrix Variate Distributions, Chapman & Hall/CRC, London, UK, 2000.

8. Srinidhi, N., T. Datta, A. Chockalingam, and B. S. Rajan, "Layered tabu search algorithm for large-MIMO detection and a lower bound on ML performance," IEEE Trans. Commun., Vol. 59, 2955-2963, 2011.
doi:10.1109/TCOMM.2011.070511.110058

9. Zhang, X., D. P. Palomar, and B. Ottersten, "Statistically robust design of linear MIMO transceivers," IEEE Trans. Signal Process., Vol. 56, 3678-3689, 2008.
doi:10.1109/TSP.2008.919384

10. Artigue, C. and P. Loubaton, "On the precoder design of flat fading MIMO systems equipped with MMSE receivers: A large-system approach," IEEE Trans. Inf. Theory, Vol. 57, 4138-4155, 2011.
doi:10.1109/TIT.2011.2145710

11. Scaglione, A., P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, "Optimal designs for space-time linear precoders and decoders," IEEE Trans. Signal Process., Vol. 50, 1051-1064, 2002.
doi:10.1109/78.995062

12. Are, H. and G. David, "Precoded orthogonal space-time block codes over correlated ricean MIMO channels," IEEE Trans. Signal Process., Vol. 55, 779-783, 2007.
doi:10.1109/TSP.2006.885760

13. Ding, M. H. and S. D. Blostein, "Maximum mutual information design for MIMO systems with imperfect channel knowledge," IEEE Trans. Inf. Theory, Vol. 56, 4793-4801, Oct. 2010.
doi:10.1109/TIT.2010.2059870

14. Ding, M. H. and S. D. Blostein, "MIMO minimum total MSE transceiver design with imperfect CSI at both ends," IEEE Trans. Signal Process., Vol. 57, 1141-1150, Mar. 2009.
doi:10.1109/TSP.2008.2008542

15. Li, X., S. Jin, X. Q. Gao, and K. K. Wong, "Near-optimal power allocation for MIMO channels with mean or covariance feedback," IEEE Trans. Commun., Vol. 58, 289-300, 2010.
doi:10.1109/TCOMM.2010.01.070377

16. HjØrungnes, A., Complex Valued Matrix Derivatives - With Applications in Signal Processing and Communications, Cambridge University Press, 2011.

17. Shen, H., B. Li, M. Tao, and X. Wang, "MSE-based transceiver designs for the MIMO interference channel," IEEE Trans. Wireless Commun., Vol. 9, 3480-3489, 2010.
doi:10.1109/TWC.2010.091510.091836