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Abstract—With tens or an even larger number of antennas utilized,
large-MIMO systems have many potential merits. However, there are
also some difficulties with its practical realization. For example, the
feedback overhead caused by sending back a large precoding matrix
is heavy. In this paper, we propose a selective linear transceiver
scheme to reduce the overwhelming feedback overhead in correlated
large-MIMO systems. In line with the required reduced amount of
feedback, antennas which can provide a potentially large diversity
gain are firstly chosen independently of the actual channel realization.
The transceiver is then designed over correlated MIMO channels in
an iterative way to minimize the sum of detection errors under the
transmit power constraint. Although optimal solutions for the case
of full transceiver have been given under some special scenarios, we
modify them to improve the BER performance of systems. Monte-
Carlo simulation results verify that the proposed selective linear
transceiver is a useful scheme in large-MIMO systems to provide a
tradeoff between performance and feedback overhead.

1. INTRODUCTION

It is well known that the performance of MIMO systems can be
significantly improved by increasing the number of transmit and/or
receive antennas [1]. Using tens or even hundreds of antennas [2],
the large-MIMO systems can bear much higher data rate. However,
there are also many challenges [2] for practically realizing large-MIMO
systems, such as antennas placement [3-5], channel estimation and
low-complexity near-optimal detection methods.
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Some low-complexity receivers are proposed in [2,8]. However,
there is only few works on the precoder design for large-MIMO
systems [10]. Although traditional joint linear transceiver design
methods [6,9,11] can be directly utilized, problems with feedback
overhead and transmitter/receiver complexity become increasingly
prominent in frequency division duplexing (FDD) systems with a large
number of antennas.

In this paper, we design a selective linear transceiver over
correlated large-MIMO channels. Motivated by reducing the feedback
overhead, we constrain each data stream to be transmitted only over
the selected antennas. The equalizing matrix can also be similarly
constrained out of concern of detection complexity. Independently
from the actual channel realization, antenna sets are firstly determined
to provide possibly large diversity gain, and the transceiver structure
is thus established. In an iterative way, we then design the transceiver
under the total transmit power constraint to minimize the sum of
detection errors. In the limiting case where both the precoder and the
equalizer are full matrices, the proposed method is equivalent to that
of [14]. The optimal full transceivers in the sense of minimizing the sum
of detection errors are proposed for the special scenarios of correlated
transmit antennas only [9] and correlated receive antennas only [14].
We modify both solutions to provide better bit error ratio (BER)
performance. The proposed scheme is proven effective in achieving
a tradeoff between performance and feedback overhead.

In Section 2, the correlated large-MIMO channel model is
introduced and the transceiver design problem is formulated. In
Section 3, we firstly introduce the structure of our selective transceiver,
and then describe the antenna selection rules and transceiver design
algorithm. The full transceiver case is discussed in the last part of
Section 3. Numerical results and conclusions are given in Sections 4
and 5 respectively.

Notations: Vectors and matrices are represented by lower and
upper case boldface letters. The superscripts (-)* and (-) denote
complex conjugate and complex conjugate transpose. tr(-) denotes
matrix trace and ® represents the Kronecker product. I represents
the identity matrix and J37, is a single-entry m x n matrix with 0
everywhere except that the (7, j) entry is 1. Ag, g, represents a ny X no
submatrix of A with rows and columns indexed by the sets S; and So
respectively, where n; and nsy are the cardinalities of S and Ss.
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2. SYSTEM MODEL

2.1. The Kronecker MIMO Channel Model

Due to the large quantity of antennas, correlation among antennas in
large-MIMO systems is usually inevitable. We consider a M, x M,
MIMO channel matrix with correlation following the widely used
Kronecker model [12,13,15]

H = H, + C/2H.C!/ (1)

where H; = C,lﬂ/ QI:ICtT/ 2 is the channel estimation; both H and
H. have ii.d. entries distributed as CN (0,1 — 02) and CN (0,0?)
respectively, where o2 reflects channel estimation accuracy; C;, C,
are the covariance matrices at the transmitter and receiver side
respectively, and the whole correlation matrix for MIMO systems is
their Kronecker product C = C; ® C,..

2.2. Linear Transceiver Design Problem Formulation

With the channel model (1), the detected signal § in MIMO systems
can be written as

§=Gy=GHFs+v) (2)

where y is the M, x 1 received symbol vector; F € CMt*Ms and G €
CMsxMr are the linear precoding and equalizing matrices respectively;
Mg x 1 (Mg < rank (H) = min(M,, M,)) transmitted data vector s is
assumed to have the covariance matrix R, = E[ssf] = I; noise vector
v is zero mean circularly symmetric complex Gaussian distributed with
the covariance matrix R, = E[vvl] = ¢2I, and is uncorrelated with s.

To design the transceiver F and G wunder the criterion of
minimizing the sum of mean squared error (MSE) subject to the total
transmit power constraint Py, the following optimization problem can
be formulated

min tr {E[MS ) =tr eell
min ¢ {EMSE(F, G))} = tr {E [ec”']} o
s.t. tr (FFP) <Py

where e = § — s is the detection error vector and the MSE matrix thus
18

MSE(F,G) = (GHF — I)(GHF - 1) + GR, G (4)

With the statistical CSI model (1), we can calculate the expected MSE
matrix [7] as

E[MSE(F, G)] = (GH,F —I) (GH,F - ) + GR,G" (5
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where R, = R, + 0 2tr(FFECT)C,. In the following, F and G will

be designed at the receiver side based on the knowledge of o2 ,H, C,
and C,, and then F will be fed back to the transmitter.

3. SELECTIVE LINEAR TRANSCEIVER DESIGN FOR
LARGE-MIMO SYSTEMS

3.1. Selective Transceiver Structure

If the precoder F has M; Mg nonzero entries, large-MIMO systems may
suffer overwhelming feedback overhead. The large dimensions of the
matrices G and F also make the transceiver complicated. An intuitive
approach to deal with these problems is to restrict that only some
carefully selected entries of F are non-zero. It is assumed that the
pth data stream is transmitted only over the antenna set F(p), which
has cardinality of n(F(p)) = B1 < M;. In other words, each data
stream has symbols transmitted only on By out of M; antennas. The
equalizer G can also be similarly constrained over the antenna sets
G(p), of which the cardinality is n(G(p)) = Bs < M,. The transceiver
F and G can thus be mathematically expressed as

F= Zp 1Zq€.7:p) Mt,Ms®qu

Z qug Iata, © Gag

where the entry F, , generates the transmitted signal component over
the gth antenna for transmitting the pth data stream; the By x1 column
vector Fy,, formed by stacking the entries F,, , (¢ € F(p)), is the whole
precoder for generating the transmitted signal components over the
set of antennas F(p) corresponding to the pth data stream. The G, 4
operates on the received signal of the gth antenna for detecting the
pth data stream; the 1 x By row vector G,, formed by stacking the
entries Gy 4 (¢ € G(p)), is the whole equalizer operating on the set
of antennas G(p) to obtain the pth data stream. In short, each data
stream is equalized over only Bs instead of all M, antennas.

Given By and B>, we need to choose the elements of the sets
F(p) and G(p), which are the antennas utilized for transmission and
equalization of the symbol of the pth data stream. The optimal antenna
sets F and G can be found by exhaustive search over all possible
sets and comparing the resultant objective function value of (3) with
the knowledge of the channel H. However, it not only causes very
high complexity but also increases the feedback overhead since the
transmitter needs to be informed about F(p).

(6)
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As aresult, we assume that the selected antenna sets do not change
with the channel realization H. We select those antennas that can
provide statistically large transmit and receive diversity. Since the
correlation between antennas usually decreases with antenna distance,
the diversity provided by choosing neighboring antennas is limited due
to their strong correlations. To obtain as a large diversity as possible,
we choose the antennas based on the following two rules: (a) the
minimal distance between each pair of selected antennas should be
as large as possible; (b) the antennas should be selected with an equal
probability.

For clarity, we show an exemplary F for a 32 x 16 MIMO
system in Figure 1 when each of 16 data streams is transmitted
over 4 or 16 antennas. The black squares represent the selected
antennas for transmission. For each data stream, the minimal distance
between different selected antenna pairs are all equal. Besides, the
transmitted symbol over each antenna is formed by an equal number
of data streams. Compared with a full precoding matrix, the feedback
overhead of our transceiver when By = 4 and 16 can be reduced by
87.5% and 50% respectively.

Transmit Antenna Index
Transmit Antenna Index

30

[
[ ]
5 10 15

o

Data Stream Index Data Stream Index
(a) (b)
Figure 1. Selected transmit antennas when (a) By = 4 and (b)

By =16.
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3.2. Lagrange Multiplier Method Based Solution

The objective function in (3) is non-convex even for both full F
and G. However, it has been pointed out in [14] that the global
optimal solution satisfies the first-order Karush-Kuhn-Tucker (KKT)
conditions. Although the transceiver structure is constrained as shown
in (6), we can still find the solution according to the first-order KKT
conditions. The Lagrange function of the optimization problem shown
in (3) can be expressed as

L(G:F;\) = tr [(GHlF ~I)(GH,F - )? + GR,G"
+A x [tr (FF?) — P (7)

where A is a nonnegative Lagrange multiplier.
The first-order partial derivative [16] of L with respect to Gy,
and F . can be obtained as

oL
8F* = (I)q’]:(p)Fp — Fq,p + )\F(Mg (8&)
p,q
oL —
0G* = Gp:g(p),q —Apgq (8b)
p,q
where
r =HIGH
& =TT¥ + o?tr(GC,GH)CT o)
A =FHIH
==A"A +R,

Stacking the results of (8), we can also obtain the following first-order
partial derivatives of L with respect to F, and G,

oL
o~ 2Fw.FeFr ~ Trepp T AFp (10a)
p
oL -
5 = GrZam.6() ~ Ardwm) (10D)
p

The optimal solution of (3) must satisfy the first-order KKT
conditions, which means that both JL/JF; in (10a) and OL/0G,,

in (10b) are zero matrices. Consequently,

-1

Fy = (Prp).7p) + A Ig)  Trp)p (11a)
=1

Gp = Ap,g(p):g(p)g(p) (11b)
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where A is numerically found as shown in the Appendix so that the
total transmit power constraint can be satisfied. Using the equations
n (11a) and (11b), we propose the following iterative algorithm to
design the linear transceiver. In the extreme case where both G
and F are full matrices (By = M;, By = M,), our solution is
identical to that of [14, Table 1] and A can be directly calculated by

A = tr(GR,GH) /Py [14, Lemmal].

3.3. Full Transceiver Scenario

When both the precoding and equalizing matrices are full, the
optimization problem (3) has a closed-form solution if either p, or
pt is zero. We restate the solutions here for further analysis.

Algorithm 1 Iterative Transceiver Design Method for Large-MIMO
Systems

1. Randomly generate a precoder F(©) satisfying the total power
constraint and then calculate the corresponding equalizing
matrix G via (11b). Evaluate the objective function f(0) =

tr{E[MSE(G®, FO)]} via (5).

2. For the jth (1 < j < J) iteration, update the tranbcelver F(J)
and GU) via (11), and calculate f(j) = tr{E[MSE(G N}
via (5).

3. If the convergence threshold is satisfied W < ¢, stop;

otherwise, repeat step 2.

3.8.1. Solution for the Special Case py #0, pr =0 [14]

The optimal solution of (3) when p, = 0 is proposed in [14, Section III].
Define the eigenvalue decomposition (EVD)

(021 + 02P,CT) " HIH, (02 + 02PoCT)
~ A O -
— (v v) (5 5)v V)" (12)

where A contains all positive eigenvalues arranged in a decreasing

order, A contains zero eigenvalues, V and V contain the corresponding
eigenvectors. The optimal solution of (3) is

Fopt = (001 + U?POCtT)fl/Q VAr,,,
Gopt = Ac,, V¥ (021 + 02P,CT)

—-1/2

(13)
Hy'
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The diagonal My x M matrices Ap,,, and Ag,,, are given by

_ 1/2
Apyy = (712 o A2 - )
1/2 1/2 X 1/2 (14)
Ag,, = (Tf / Nl/ oy TAT? —/~01/012;A71>Jr AT
where
a2Po
T =
a3Po + ajaz — asay
2 (15)
[y = azo;(asPo + ajag — agay)

(Po + a1)*Po

Denote M. < M, as the number of nonzero diagonal entries of
Ap,,., the coefficients a; ~ a4 are traces of the M{ x M; top-

left submatrices of A=, A=Y/2 A=V2VH (521 4+ ¢2PyCT)~1V and
A'VH(o2T + 02PyCT) =1V, respectively. The value of M/ can be
found by an iterative method shown in [14, Appendix EJ.

3.8.2. Solution for the Special Case py =0, p, # 0 [9]

The optimal solution of (3) in the case of p = 0 has been
given in [9, Theorem 1], which consists of eigenvectors of the matrix
HI (621 + 02PyC,)"'H; and a power allocation strategy.

3.8.8. Modified Solutions

The solutions given in [14] and [9] can achieve the minimal MSE trace
and the resultant MSE matrices (5) are diagonal. However, the MSEs
for different data streams (i.e., the diagonal entries of MSE matrices)
are not equal. If the same modulation is used on each data stream,
such MSEs variation will degrade the BER performance especially in
the high SNR regime, where the overall BER is dominated by the data
stream with the largest MSE.

The average BER can be utilized as the criterion for transceiver
design as shown in [6, Section V(C)]. It has been proved in [6] that the
BER is a Schur-convex function in the low BER regime. However, even
when different data streams employ the same constellation, the optimal
power allocation problem is still hard to be solved [6, Equation (51)].

Since the solutions given in [14] and [9] are both unique up to a
unitary transform, we can multiply the precoding matrix with a unitary
matrix and change the equalizing matrix accordingly. Although the
resultant new MSE matrices are not diagonal anymore, the diagonal
entries of the new MSE matrices are majorized by those of the original
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ones. Such unitary matrix can be a Hadamard or a standard DFT
matrix, which endows the new MSE matrix with identical diagonal
entries [6, Theorem 1] while maintaining the trace unvaried. Although
this is not the optimal solution for minimizing the overall system BER,
it achieves better BER performance via an identical MSE for different
data streams. In the case of p, = 0 [14], the optimal solution (13) is
modified as:

F/opt — Fopthft

/ _ nH
opt — FdftGOPt

where Fg is the standard M,-point DFT matrix. When p; = 0 [9],
we can similarly right multiply the optimal precoding matrix with F g
and then change the MMSE equalizer accordingly.

(16)

4. NUMERICAL RESULTS AND DISCUSSION

We define the transmit signal to noise ratio as SNRqg = 101log;, Po/c2.
The large-MIMO system is equipped with M; = 32 transmit and M, =
16 receive antennas, where My = 16 QPSK modulated data streams are

transmitted. The correlation matrices are set as [Cyl;, j, = pyl_j ! for

i1, 51 €{1,2, ..., M} and [Cliy 4, = pi2 2 for dg, o € {1,2,..., M,},
where 0 < p¢, pr < 1.

FEach data stream is assumed to be transmitted over 4, 16 or 32
antennas, where the detailed antenna selection for By = 4 and 16 are
shown in Figure 1. Besides, the equalizing matrix is assumed to be
full (By = M, ) for better BER performance. In the following, different
transceivers are compared under three different scenarios: correlated
transmit antennas only, correlated receive antennas only, and both
correlated transmit/receive antennas.

4.1. Correlated Transmit Antennas Case (p; 7# 0, p,, = 0)

In Figure 2, we firstly compare the BER performance of full
transceivers. The optimal solution of (3) given in [14] and the proposed
modified version (16) are compared under three o2 values. With more
accurate channel estimation (smaller ¢2), the BER performance of
both transceivers is improved. However, there is always performance
advantage of our modified scheme over that of the transceiver [14].
The MSE matrix has identical diagonal entries via (16) while its trace
remains the same. In other words, the resultant MSEs on different data
streams are identical, which provides better BER performance when
the same modulation is adopted on each stream. The SNR gain at
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Figure 2. Uncoded BER vs. SNR of the proposed transceiver
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Figure 3. Uncoded BER vs. SNR of the unprecoded scheme, the
proposed transceiver (By = M,), and the scheme in [14] when p, = 0.5,
pr =0 and (a) 02 = 0.01 or (b) 02 = 0.05.

10~* brought about by such modification is about 3dB for ¢ = 0.01
and larger than 5dB for o2 = 0.05.

Next, we evaluate the BER performance of the proposed selective
transceiver with different By values in Figure 3. The unprecoded
scheme is evaluated for comparison, where the data streams are
transmitted over randomly selected antennas under the same power
constraint.  Although the unprecoded scheme has performance
improved with decreasing o2, it always suffers a severe error floor.
Even with only 4 antennas selected to transmit each data stream,
the proposed transceiver performs much better than the unprecoded
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Figure 4. Uncoded BER vs. SNR of the proposed transceiver
(B1 = My, By = M,) and the scheme in [9] when p; = 0 and p, = 0.5.

scheme in terms of the disappearance of the error floor and a larger
diversity order. For example, the BER at SNR of 20dB is decreased
from 0.05 to 8 x 107° when ¢ = 0.01. The proposed scheme performs
close to or even better than the transceiver of [14] when Bj increases
to 16. We see that there is a SNR gap between our transceiver and
the scheme in [14] of only about 1dB when ¢ = 0.05. Under the
condition of o2 = 0.01, our scheme has almost the same performance
as that of [14] and even a little larger diversity order.

4.2. Correlated Receive Antennas Case (p; = 0, p, # 0)

For the case of p; = 0, the BER performance of the full transceiver
proposed in [9,Section 6] and its modified version described in the
paragraph following (16) is compared in Figure 4. Due to the identical
diagonal entries of the transformed MSE matrix of the modified
transceiver, the modified transceiver always outperform the scheme
in [9] under different channel accuracy scenarios.

In Figure 5, we evaluate the BER performance of the proposed
transceiver with different By values when p; = 0. It can be observed
that the proposed transceiver significantly outperforms the unprecoded
scheme even with such small B; as 4, and exhibits about the same BER
performance with that of the scheme in [9] when B; increases to 16.

4.3. Correlated Transmit and Receive Antennas Case

(pt # 0, pr #0)

In Figure 6, we evaluate the proposed transceiver in the case of both
correlated transmit and receive antennas. So far, there is no closed-
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Figure 5. Uncoded BER vs. SNR of the unprecoded scheme, the
proposed transceiver (By = M,) and the scheme in [9] when p; = 0,
pr = 0.5 and (a) o2 = 0.01 or (b) o2 = 0.05.
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Figure 6. Uncoded BER vs. SNR of the unprecoded scheme, the
proposed transceiver (Bs = M,) when p; = 0.2, p, = 0.8 and (a)
02 =0.01 or (b) o2 = 0.05.

form solution for such case. With only 4 transmit antennas selected,
the proposed transceiver performs much better than the unprecoded
scheme, which suffers from severe error floors of 0.05 and 0.1 when
02 = 0.01 and 0.05 respectively. In the left of Figure 6, we can observe
that there is a SNR gain of about 2 ~ 3dB at BER of 10~* when
the proposed transceiver increases the parameter Bj from 16 to 32.
However, the proposed transceiver with B 16 shows about the
same diversity order as that of By = 32. Similar relationship can
also be observed when o2 increases to 0.05. As a result, the proposed
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transceiver with By = 16 can acquire a large portion of performance
improvement brought by a full precoding matrix.

5. CONCLUSION

A selective linear transceiver, where data streams are precoded
over deliberately selected antennas, is proposed for correlated large-
MIMO systems in this paper. We firstly select antennas to provide
potentially large diversity without the knowledge of actual channel
realization. Correspondingly, the structure of the precoding and
equalizing matrices are established. Based on the Lagrange multipliers
method, the transceiver is then designed over Kronecker correlated
MIMO channels to minimize the sum of detection errors under the
total transmit power constraint.

With part of transmit antennas selected, the feedback overhead
of the precoding matrix can be significantly reduced. The numerical
results show that good error performance can be achieved by
transmitting data only over the selected small portion of transmit
antennas.  When the transceiver consists of full precoding and
equalizing matrices, optimal solutions with closed-form expression are
provided in previous works for the scenario of either uncorrelated
transmit or uncorrelated receive antennas. In this paper, such solutions
are modified so that the resultant MSE matrix has identical diagonal
entries with its trace remaining unaltered. Simulations show that the
modified transceivers can improve the BER performance of systems.
Our transceiver possesses the features of both the transmit antenna
selection scheme and traditional linear precoding scheme. The tradeoff
between performance and feedback overhead can thus be achieved with
a large degree of freedom.
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APPENDIX A. NUMERICAL METHODS TO OBTAIN A\

Similar to that of [17,Section III], we denote the eigenvalue
decomposition of Pr( 7, = UprUf with U, and D, contain
eigenvectors and nonnegative eigenvalues respectively. The precoder
in (11a) can be rewritten as F, = Up(D, + AXI)"'U/IT' () ,,. Define
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the Hermitian matrix Q, = U;I Ff(p%pl“l;_-l( U,, we have

P),p

tr (Fpr) =tr {[Dp + A7 Qp} = Zjiﬁl % (A1)

and

tr (FFH) = ZMso_ltr(F Fl)
p=

_ ZP ) 2231“ QZPS_Z:M <P (A2)

where A can be numerically found to sat1sfy (A2).
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