Vol. 25
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-11-26
A High Resolution DOA Estimating Method Without Estimating the Number of Sources
By
Progress In Electromagnetics Research C, Vol. 25, 233-247, 2012
Abstract
The performance of high resolution subspace-based algorithms are particularly sensitive to the prior information of the source number, the Signal-to-Noise Ratio (SNR) and the snapshot. Although the existing direction-of-arrival (DOA) estimation methods without estimating the source number could eliminate the awful impact brought by incorrect source number estimation, yet its performance would get deteriorated by small snapshots and low SNR. Methods which exploit noise and signal subspaces information simultaneously, such as SSMUSIC, could provide a high resolution performance in such nonideal circumstances. However, its performance would degrade severely when the prior information of the source number is incorrect. To provide a DOA estimation method without estimating the number of source, which has a high resolution performance in small sample and low SNR scenario, using all information spreads in eigenvalues and eigenvectors, this paper reconstructs a new spatial spectrum which is very similar to the SSMUSIC algorithm. In order to enhance the robustness of the new method, we provide an empirical method to modify the eigenvalues to prohibit the spreading of noise eigenvalues caused by snapshot deficient and low SNR. To verify the validity of the new method, comparisons with other algorithms are made in computer simulations and the measured data test.
Citation
Qing-Chen Zhou, Huotao Gao, and Fan Wang, "A High Resolution DOA Estimating Method Without Estimating the Number of Sources," Progress In Electromagnetics Research C, Vol. 25, 233-247, 2012.
doi:10.2528/PIERC11102607
References

1. Chadwick, , A., , "Superresolution for high-frequency radar," IET Radar, Sonar and Navigation,, Vol. 1, No. 6, 431-436, , 2007.
doi:10.1049/iet-rsn:20060176

2. Zhang, X., X. Gao, G. Feng, and D. Xu, , "Blind joint DOA and dod estimation and identifiability results for MIMO radar with di®erent transmit/receive array manifolds," Progress In Electromagnetics Research B,, Vol. 18, 101-119, 2009.
doi:10.2528/PIERB09050603

3. Bencheikh, M. L., Y. Wang, and , "Combined esprit-rootmusic for DOA-dod estimation in polarimetric bistatic MIMO radar,", Vol. 22, 109-117, 2011.

4. Liang, , G. L., K. Zhang, F. Jin, and G. P. Zhang, , "Modified MVDR algorithm for DOA estimation using acoustic vector hydrophone," 2011 IEEE International Conference on Computer Science and Automation Engineering,, 327-330, , 2011 .
doi:10.1109/CSAE.2011.5952480

5. Yang, , P., F. Yang, and Z.-P. Nie, , "DOA estimation with sub-array divided technique and interporlated esprit algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904

6. Yang, , P., F. Yang, Z.-P. Nie, H. Zhou, B. Li, and X. Tang, "Fast 2-d DOA and polarization estimation using arbitrary conformal antenna array," Progress In Electromagnetics Research C, Vol. 15, 119-132, 2012.
doi:10.2528/PIERC11070706

7. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. on Antennas and Propagation , Vol. 34, No. 2, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

8. McCloud, , M. L. and L. L. Scharf, "A subspace identification algorithm for high-resolution DOA estimation," IEEE Trans. on Antennas and Propagation,, Vol. 50, No. 10, , 1382-1390, , 2002.
doi:10.1109/TAP.2002.805244

9. Mestre, , X., M. A. Lagunas, and , "Modified subspace algorithms for DOA estimation with large arrays," IEEE Trans. on Signal Processing,, Vol. 56, No. 2, 598-614, 2008.
doi:10.1109/TSP.2007.907884

10. You, , H., J. G. Huang, and J. F. Chen, "Synthetic spatial spectrum DOA estimator for two closely spaced emitters," 3rd IEEE Conference on Industrial Electronics and Applications, , Vol. 2449, No. 2451, 2008.

11. Yang, , S. L., H. Y. Ke, J. C. Hou, X. B. Wu, J. S. Tian, and , "Detection of the number of signals in super-resolution ocean surface current algorithm for OSMAR2000," IEEE Conference and Exhibition on OCEANS, 962-966, , 2001.

12. Nadakudit, R. R. and A. Edelman, , R. R., A. Edelman, and , "Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples," IEEE Trans. on Signal Processing , Vol. 56, No. 7, 2625-2638, 2008.
doi:10.1109/TSP.2008.917356

13. Nadler, B., "Nonparametric detection of signals by information theoretic criteria: Performance analysis and an improved estimator," IEEE Trans. on Signal Processing, Vol. 58, No. 5, 2746{275-2756, 2010.
doi:10.1109/TSP.2010.2042481

14. Haddadi, , F., M. M. Mohamaddi, M. M. Nayebi, et al. "Statistical performance analysis of MDL source enumeration in array processing," IEEE Trans. on Signal Processing, Vol. 58, No. 1, 452-457, 2010.
doi:10.1109/TSP.2009.2028207

15. Qi, , C. Y., Y. S. Zhang, Y. Han, and X. H. Chen, "An algorithm on high resolution DOA estimation with unknown number of signal sources," 4th International Conference on Microwave and Millimeter Wave Technology , 227-230, 2004.

16. Park, , C. S., J. H. Choi, J. W. Yang, and S. P. Nah, , "Direction of arrival estimation using weighted subspace fitting with unknown number of signal sources," 11th International Conference on Advanced Communication Technology, , 2295-2298, , 2009.

17. Zhang, , Y., B. P. Ng, and , "MUSIC-Like DOA estimation without estimating the number of sources," IEEE Trans. on Signal Processing,, Vol. 58, No. 3, 1668-1676, 2010.
doi:10.1109/TSP.2009.2037074

18. Xu, , Z. Y., P. Liu, and X. D. Wang, , "Bline multiuser detection: From MOE to subspace methods," IEEE Trans. on Signal Processing, , Vol. 52, No. 2, 510-524, 2004.
doi:10.1109/TSP.2003.821111

19. Frikel, M., S. Bourennane, and , "High-resolution methods without eigendecomposition for locating the acoustic sources," Applied Acoustics, , Vol. 52, No. 2, 139-154, 1997.
doi:10.1016/S0003-682X(97)00015-7

20. Manikas, A. N. , A. N., L. R. Turnor, and , "Adaptive signal parameter estimation and classification technique," IEE Proceedings --- F, Vol. 138, No. 3, 267-277, 1991..

21. Capon, , J., , "High resolution frequency-wavenumber spectrum analysis," Proceedings of the IEEE, , Vol. 57, No. 8, 1969..
doi:10.1109/PROC.1969.7278

22. Porat, , B., B. Friedlander, and , "Analysis of the asymptotic relative e±ciency of MUSIC algorithm," IEEE Trans. on Acoustics, Speech and Signal Processing, , Vol. 36, No. 4, 532-544, , 1988.
doi:10.1109/29.1557

23. Yang, S. L., , S. L., H. Y. Ke, X. B. Wu, J. S. Tian, and J. C. Hou, "HF radar ocean current algorithm based on MUSIC and the validation experiments ," IEEE Journal of Oceanic Engineering, Vol. 30, No. 3, 601-617, 2005.
doi:10.1109/JOE.2005.858370

24. Yan, , S., X. Wu, and Z. Chen, , "Remote sensing with Tdmf radar: Some preliminary results," Progress In Electromagnetics Research Letters,, Vol. 14, 79-90, 2010.
doi:10.2528/PIERL10022405

25. Naderi Shahi, , S., M. Emadi, and K. H. Sadeghi, , "High resolution DOA estimation in fully coherent environments," Progress In Electromagnetics Research C, , Vol. 5, 135-148, 2008.

26. Lee, , H. B. and Resolution threshold of, "Resolution threshold of beamspace MUSIC for two closely spaced emitters," IEEE Trans on Acoustics, Speech and Signal Processing, Vol. 38, No. 9, 1545-1559, 1990.
doi:10.1109/29.60074