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Abstract—The performance of high resolution subspace-based
algorithms are particularly sensitive to the prior information of the
source number, the Signal-to-Noise Ratio (SNR) and the snapshot.
Although the existing direction-of-arrival (DOA) estimation methods
without estimating the source number could eliminate the awful impact
brought by incorrect source number estimation, yet its performance
would get deteriorated by small snapshots and low SNR. Methods
which exploit noise and signal subspaces information simultaneously,
such as SSMUSIC, could provide a high resolution performance in
such nonideal circumstances. However, its performance would degrade
severely when the prior information of the source number is incorrect.
To provide a DOA estimation method without estimating the number
of source, which has a high resolution performance in small sample
and low SNR scenario, using all information spreads in eigenvalues
and eigenvectors, this paper reconstructs a new spatial spectrum which
is very similar to the SSMUSIC algorithm. In order to enhance the
robustness of the new method, we provide an empirical method to
modify the eigenvalues to prohibit the spreading of noise eigenvalues
caused by snapshot deficient and low SNR. To verify the validity of the
new method, comparisons with other algorithms are made in computer
simulations and the measured data test.

1. INTRODUCTION

Direction-Of-Arrival (DOA) estimation is one of the most important
research problems in various applications such as radar [1–3], sonar [4],
communications [5–6], etc. Among various methods, subspace-
based methods [7–10] have received widely attention because of their
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relatively high resolution and computational simplicity. However,
all subspace-based algorithms need the exact number of sources to
separate signal subspace and noise subspace. In fact, the number of
sources is unknown, which need to be provided by the source number
estimation methods. Nevertheless, those source number estimation
methods [11–14] also exist some shortcomings. If the models they
use do not accord with the practical signal environment, the number
of sources will be incorrectly estimated, making the performance
of subspace-based algorithms deteriorate significantly. In order to
eliminate the awful impact brought by source number estimation, on
the one hand, we need to improve the accuracy of source number
estimation method. On the other hand, it is necessary to develop DOA
estimation method without estimating the source number [15–19].

ASPECT (Adaptive Signals Parameter Estimation and Classifi-
cation Technique) algorithm [20] is based an adaptive rotation of an
initial subspace to the point at which the initial subspace is rotated
to until it coincides with the true signal subspace. In [15], the au-
thor connects the Pisarenko algorithm with the ASPECT principle
to develop a new DOA estimation technique without estimating the
source number. Due to that the Pisarenko algorithm only uses the
eigenvector corresponding to the smallest noise eigenvalue, it is likely
to produce many spurious peaks in its spatial spectrum, which brings
about a high resolution as the multiple signal classification (MUSIC)
algorithm [7]. After the spurious peaks removed by ASPECT projec-
tion, the real DOAs are obtained. Similar to [15], the method in [16]
is also based on the ASPECT algorithm. These methods based on the
ASPECT algorithm have a common drawback: it is likely to become
invalid when the source number is larger than half of the number of
sensors. Beamforming techniques can avoid estimating the number of
sources, though it cannot provide high resolution as MUSIC. Through
establishing some connections between MVDR (minimum variance dis-
tortionless response) beamformer [21] and MUSIC, some authors also
find high resolution DOA estimation methods without estimating the
source number [17–19]. However, these methods bring about new prob-
lems. The proposed algorithm in [17] requires generalized eigendecom-
position for every direction. Although some methods to reduce compu-
tational complexity are recommended, the problem of high computa-
tional is still a burden. In the small snapshots and low Signal-to-Noise
Ratio (SNR) circumstance, the proposed algorithm in [18, 19] is close
to the Pisarenko algorithm, which is likely to produce many spurious
peaks.

All these DOA estimation methods without estimating the
source number could be classified to noise subspace method, for
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the information they use is completely from noise subspace. In an
ideal circumstance, they could get as high resolution as MUSIC.
However, the resolution properties of these MUSIC-class algorithms
are particularly sensitive to the SNR and the snapshots. Moreover,
it is common to find scenarios of snapshot deficient and low SNR in
practical engineering. In this case, the spatial spectrums [8–10] which
exploit noise and signal subspaces information simultaneously have
better resolution and higher robustness performance than MUSIC-class
algorithms. At the same time, these methods require more accurate
information of the source number than the MUSIC algorithm.

Facing these difficulties, the purpose of this paper is to provide
a DOA estimation method without estimating the number of source,
which has a high resolution and robust performance in the snapshot
deficient and low SNR scenario. We exploit all the information
obtained from eigendecomposition of the array covariance matrix to
reconstruct a new spatial spectrum, which is very similar to the
SSMUSIC (Signal Subspace Scaled MUSIC) algorithm [8]. In order
to enhance the robustness of the new method, we provide an empirical
method to modify the eigenvalues to prohibit the spreading of noise
eigenvalues caused by snapshot deficient and low SNR.

The rest of this paper is organized as follows. The signal model is
introduced, and several relevant algorithms are reviewed in Section 2.
Section 3 presents the proposed method. To verify the validity of the
proposed algorithm, computer simulations are conducted in Section 4
and test of practical engineering is made in Section 5. Finally, we make
conclusions in Section 6.

2. SIGNAL MODEL AND RELEVANT ALGORITHMS

Consider a planer array with arbitrary geometry constituting of M
sensors. Suppose that P (1 ≤ P ≤ M − 1) independent narrowband
signals {si(t)} with center frequency f0 are in the field far from the
array and impinge on the array from distinct direction {θi}. The
received noisy signals can be expressed in a compact form as:

X(t) =
P∑

i=1

a(θi)si(t) + n(t) = A(θ)s(t) + n(t) (1)

where X(t), s(t), n(t) are the vectors of the received signals, the
incident signals and the additive noise, and A is M × P matrix
A(θ) = [a(θ1), a(θ2), . . . , a(θM )]. Here a(θi) is the steering vector of
the array toward the direction θi and T denotes transpose.

Assume that signals and additive noises are stationary and ergodic
zero mean complex valued random processes. In addition, the noises
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are assumed to be uncorrelated with signals, uncorrelated between
sensors, and to have identical variances σ2 in each sensor. Under these
assumptions, the covariance matrix R of array outputs is given by

R = E
[
x(t)xH(t)

]
= ARSAH + σ2I (2)

where E[•] denotes the statistical expectation, H denotes conjugate
transpose, RS is signal covariance matrix, I denotes the identity
matrix. The eigendecomposition of matrix R yields

R =
M∑

i=1

λiuiu
H
i (3)

where λi and ui are the ith eigenvalue and ith corresponding
eigenvector, respectively. In the ideal environment, we have

λ1 ≥ . . . ≥ λP > λP+1 = · · · = λM = σ2 (4)

According to the multiplicity of each eigenvalue, R can be expressed
as

R = [ US UN ]
[

ΛS 0
0 σ2I

]
[ US UN ]H (5)

where ΛS is a P×P diagonal matrix containing the P upper eigenvalues
of R, US is an matrix that contains the eigenvectors corresponding to
the upper eigenvalues, and UN is an (M−P )×M matrix that contains
the eigenvectors associated with the M − P smallest eigenvalues. So
the eigenvalues and eigenvectors of the covariance matrix R can be
split into two sets that generate independent linear spaces: the signal
subspace, generated by the columns of US , and the noise subspace,
generated by the columns of UN .

It is well known that the eigenvectors corresponding to the M−P
minimum eigenvalue are orthogonal to the columns of the matrix A.
Namely, they are orthogonal to the steering vectors of the signals. All
subspace-based methods are based on the property. Now we review
some DOA estimation algorithms which are relevant to the proposed
algorithm.

The spatial spectrum of the MUSIC algorithm is given as

PMUSIC(θ) =
1

AH(θ)UNUH
N A(θ)

(6)

Due to the orthogonality between signal subspace and noise subspace,
a search for directions is made by looking for steering vectors that
are as orthogonal to the noise subspace as possible. The estimation
variance of MUSIC approaches the Cramer-Rao lower bound when
SNR approaches infinity [22] .
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In the standard form, the separation of signal subspace and noise
subspace is based on the priori information offered by the source
number estimation method. The noise subspace projection matrix
UNUH

N also could be expressed as:

UNUH
N =

M∑

i=P+1

uiu
H
i ; (7)

Through the following equation,

lim
m→∞

(
λM

λi

)m

uiu
H
i
∼=

{
0, for i = 1, . . . , P
uiu

H
i , for i = P + 1, . . . ,M.

(8)

UNUH
N can be approximately derived as

lim
m→∞σ2mR−m ∼= UNUH

N (9)

Thus, the noise subspace projection matrix is obtained without
knowing the source number. This is the principle involved in these
so called “DOA estimation methods without estimating the source
number” [18, 19]. However, All these methods could be classified to
noise subspace methods for the information that they use is completely
from noise subspace.

A different subspace-based method is presented in [8] under
the name of SSMUSIC, which has shown better performance than
traditional MUSIC in a finite sample regime. To deal with the subspace
mismatches caused by small sample, the numerator in MUSIC is
replaced by a signal subspace function in the SSMUSIC algorithm.
Its spatial spectrum is given as

PSSMUSIC(θ) =
AH(θ)

∑P
i=1

1
λi−σ2 uiu

H
i A(θ)

AH(θ)UNUH
N A(θ)

(10)

In the sight of the subspace projection theory, a method under
the name of SSM (Synthetic Spatial Spectrum) which is similar to
SSMUSIC is proposed in [10]. Its spatial spectrum is given as

PSSM (θ) =
AH(θ)

∑P
i=1

1
λi

uiu
H
i A(θ)

AH(θ)UNUH
N A(θ)

(11)

Although the weights of signal subspace projection are different in
SSMUIC and SSM. However the performances of them are nearly the
same, which can be observed in the latter simulation. In the other way,
for the operation of SSMUIC and SSM, an accurate estimation of the
source number is very critical.
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3. PROPOSED ALGORITHMS

In this paper, we propose a new algorithm to realize DOA estimation
without estimating the source number through spatial spectrum
reconstruction. When the number of sources is unknown, although we
cannot know the place of the least signal eigenvalue, yet λ1 corresponds
to the signal eigenvalue on all accounts. From the simulation result of
SSMUSIC and SSM, the weights of signal subspace projection could
be changed slightly. Thus, a new spatial spectrum function similar to
SSMUSIC is given as

Pproposed(θ) =
AH(θ)

(
1

λ1−σ2 u1u
H
1 +

∑P
i=2

1
λ i

uiu
H
i

)
A(θ)

AH(θ)UNUH
N A(θ)

(12)

λM corresponds to the noise eigenvalue in any case. Under the
assumption (4) in Section 2, we can easily derive an approximation
of the noise subspace projection matrix from Equation (8):

UNUH
N
∼= lim

m→∞

M∑

i=2

(
λM

λi

)m

uiui (13)

According to the assumption (4) and Equation (13), we obtain

1
λ1 − σ2

u1u
H
1
∼= 1

λ1 − λM
u1u

H
1 (14)

P∑

i=2

1
λ i

uiu
H
i
∼=

M∑

i=2

1
λ i

uiu
H
i − 1

λM
lim

m→∞

M∑

i=2

(
λM

λi

)m

uiui (15)

Therefore, an approximate representation of the proposed spatial
spectrum could be obtained based on Equations (12), (14)–(15).
As the power m increases, the distinction between these functions
decreases. However, all the derivations of Equations (9), (13)–(15)
are based on the assumption (4). In fact, the eigenvalues obtained
in the real circumstance are hardly satisfied with the assumption.
Especially in the snapshot deficient and low SNR case, the spreading of
noise eigenvalues is quite significant whereas all the noise eigenvalues
converge to the finite value σ2 in the ideal environment.

In order to overcome the unfavorable impact caused by the
spreading of noise eigenvalues, we modify the eigenvalues obtained from
the eigendecomposition of the matrix R. After loading a proper value
λ′′ to all eigenvalues, we can make the new eigenvalues λ′ meet:

λ′1 ≥ · · · ≥′ λ′P > λ′P+1 ≈ · · · ≈ λ′M (16)
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Although an optimal loading value is too difficult to provide, yet
we could obatin an appropriate value through an empirical method.
We define the loading value as:

λ′′ = k

∑M
i=1 λi

M
(17)

If k is too small, the spreading of the noise eigenvalues cannot
be suppressed. If k is too large, the difference between signal
eigenvalue and noise eigenvalue is not obvious, which also deteriorate
the performance of the proposed method. So we impose restrictions
on the loading value λ′′:

λM < λ′′ < λ1 (18)

In [11], the floor of the normalized MUSIC spatial spectrum
and the number of peaks are used as indicators of estimating the
source number. Similarly, two important features are observed in
simulation, which help us to find an appropriate k. Firstly, the floor
of its normalized spatial spectrum is rather low when k is appropriate.
Secondly, the floor of the spatial spectrum rises and its resolution
improves as k decreases. According to the two features, an appropriate
k could be obtained through testing the performance of the spatial
spectrum as k decreases. The following is the detailed process.

When k select a large value, the algorithm would get a low
resolution. Only the signals which are far apart could be resolved,
appearing peaks in the corresponding signal directions. While the
others which are close to each other could not be distinguished, only a
peak would be formed in the middle of the directions. As k decreases,
when the improving resolution of the algorithm makes the signals which
have not been previously distinguished resolve, the spatial spectrum in
the corresponding signal directions becomes sharp and form peaks. At
the same time, the floor of the spatial spectrum rises as k decreases,
increasing the possibility of producing spurious peaks. During this
variation, the locations of those initial peaks is a important feature to
distinguish whether those new peaks are real or not. If the locations
where are far away from the initial peaks produce peaks, those peaks
can be regard as spurious peaks. To better distinguish real peaks and
spurious peaks, a moderate floor threshold value L is selected. When
the spatial spectrum floor exceeds the threshold and the spurious peaks
occur, the test of lowering k should be stopped immediately. Then,
considering the spatial spectrum floor and the resolution of closely
signals, select an appropriate k and its corresponding spatial spectrum.

For simplicity, a large m is selected before finding k. Summarizing
the whole analysis, we implement the proposed method as follows.



240 Zhou, Gao, and Wang

Step 1) Select a large value for m and select a moderate value for
threshold L. Based on Equations (17)–(18), a set of k corresponding
to different level is provided.

Step 2) Compute the normalized spatial spectrum based on
Equations (12)–(15) as k decreases. When the spatial spectrum floor
exceeds the threshold and spurious peak occurs, stop decreasing k.

Step 3) Compare the spatial spectrum floor and its resolution of
closely signals, select an appropriate k and its corresponding spatial
spectrum.

4. COMPUTER SIMULATIONS

To illustrate the proposed method is suitable in an arbitrary array,
we use an arc array in the simulation. Assuming a uniform circular
array with 40 sensors, its radius is 150 meters. The arc array
is consisted by 16 sequential sensors of the uniform circular array.
The center frequency of signals is 10 MHz. The Rayleigh resolution
limit in this case is about 5◦. Due to that the performances of
those conventional DOA estimation methods without knowing source
number is no better than that of MUSIC, and many tests about the
awful impact brought by incorrect source number estimation have
appeared in [11, 15, 17, 19], the computer simulation only compares
the proposed algorithm, SSMUIC, SSM and MUSIC (assuming the
number of sources is estimated accurately). To calculate the resolution
probability and the estimation Root-Mean-Square-Error (RMSE),
every single experiment has computed 500 times. Regarding to two
closely spaced signals in a single experiment, if the estimated DOAs
satisfy: ∣∣∣θ̂1 − θ1

∣∣∣ +
∣∣∣θ̂2 − θ2

∣∣∣ <
∣∣∣θ̂1 − θ̂2

∣∣∣ (19)

we define the trial of angle separation is successful. On this basis, the
RMSE is calculated as:

RMSE(θ) =

√√√√ 1
K

K∑

i=1

(
θ̂i − θ

)2
(20)

where K is the number of successful trials in the Mento-Carlo
simulation, θ is the true DOA and θ̂i represents the estimated DOA of
the ith trial.

4.1. The Implement of the Proposed Algorithm

Three uncorrelated narrowband sources with the same SNR of 10 dB
are assumed to impinge from 66◦, 67.8◦ and 85◦. The snapshots is 40.
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m = 10. A set of k is provided as [10, 2.5, 0.5, 0.25, 0.08] which is based
on Equation (18). It is observed from Fig. 1 that the resolution of
two closely spaced signals improves as k decreases. At the same time,
the floor of the spatial spectrum rises which increases the possibility
of producing spurious peaks. The threshold value L is selected as
−15 dB. When k is 0.08, the floor of the spectrum has exceeded the
threshold seriously so that many spurious peaks occur. So k should
not be smaller than 0.08. To obtain a moderate floor of the spectrum
and resolution, we prefer k as 0.25.

4.2. Comparisons with SSMUIC, SSM and MUSIC

Figure 2 shows the spatial spectrums of these algorithms. In this
simulation, the DOAs are fixed at 66◦, 67.8◦ and 85◦, the SNR is
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10 dB and the snapshots is 40. It is observed that only the MUSIC
algorithm cannot resolve 66◦ and 67.8◦ , which appears a peak around
66◦. The performance of SSMUIC and SSM are nearly the same. It is
notable that the floor of the proposed method is much lower than that
of MUSIC when a proper loading value is selected.

Figure 3 shows the resolution performances of two closely spaced
signals against separation angle. In this simulation, one DOA is fixed
at 66◦, while the other varied with separation angle. Assume the
probability of 90% as a resolution threshold. The proposed method
begins to distinguish two signals at 1.5◦ whereas the MUSIC algorithm
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Figure 3. The resolution performances against separation angle with
the SNR fixed at 10 dB and the snapshots fixed at 40, k = 0.25.
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starts at 1.8◦. Although the resolution of the proposed method is
weaker than SSMUSIC and SSM, which distinguish two signals at 1.3◦.
However, its resolution is evidently better than the MUSIC algorithm.
Besides, the RSME of the proposed method is the smallest in the four
methods, which indicates its estimating result is quite reliable.

Figures 4 and 5 show the resolution performances of two closely
spaced signals against snapshot and SNR, respectively. It is observed
that the performances of all the algorithms are ameliorated as the
SNR and the snapshot increase. However, the performance of MUSIC
is rather poor in the snapshot deficient and low SNR scenario while
the proposed method, SSM and SSMUSIC perform quite robust.
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separation fixed at 1.8◦ and the snapshot fixed at 40, k = 0.25.
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5. TEST OF THE MEASURED DATA

In this paper, the measured data comes from the HF ground wave
radar [11, 23, 24] experiments by Wuhan University. The receiving
array consists of eight sensors, which are uniformly spaced in two rows.
The radar operates at 7.5 MHz. The Rayleigh resolution limit of this
array is about 42◦. The actual snapshot obtained after sliding window
preprocessing is 21. Due to the complexity of estimating the number
of ocean current, the traditional method introduced in [11, 23] needs to
test the spectra of MUSIC while the source number gradually increases
from 1 to 7.

A set of k is provided as [10, 2.5, 0.5, 0.25, 0.05] which is based on
Equation (18) . After many tests of the measured datas, the threshold
value L in the measured data is selected as −12 dB. It is observed from
Fig. 6 that the floor of the spectrum and resolution become moderate
when k decreases to 0.25. From the performances of MUSIC while the
source number increases from 1 to 2, it is easily to infer that the real
number of sources is 2. While the source number is 2 and k = 0.25,
the results of the proposed method, MUSIC and SSMUSIC are nearly
the same.

From this example, we know the DOAs can be directly estimated
by the proposed method whereas MUSIC and SSMUSIC need to know
source number firstly.

6. CONCLUSION

In this paper, we propose a simple but high resolution DOA estimating
method, the validity of which has been proven in computer simulations
and the measured data test. It not only has a higher and more reliable
performance than MUSIC, but also avoids estimating the sources
number before the estimation of DOA. To prohibit the spreading
of noise eigenvalues caused by snapshot deficient and low SNR and
enhance the robustness of the method, an empirical method to modify
the eigenvalues is proposed. Although the validity of this empirical
method has been proven in simulation, a further study to simplify
the proposed method is essential in the future work. For further
improvement, it can be combined with other techniques such as
Beamspace [25, 26], ASPECT [20] to get better and more robust
performance.
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