Vol. 27
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-02-03
A Low Power Push-Push Differential VCO Using Current-Reuse Circuit Design Technique
By
Progress In Electromagnetics Research C, Vol. 27, 85-97, 2012
Abstract
This paper presents a complementary metal-oxide-semiconductor (CMOS) differential voltage-controlled oscillator (VCO) implemented with the push-push principle. The push-push VCO uses two frequency doublers stacked in series with an LC quadrature voltage-controlled oscillator (QVCO) to share the dc current with the QVCO for low power consumption. The proposed CMOS VCO has been implemented with the TSMC 0.18 μm CMOS technology, and the die area is 0.822×1.564 mm2. At the supply voltage of 0.9 V, the total power consumption is 3.15 mW. The free-running frequency of VCO is tunable from 10 GHz to 11.15 GHz as the tuning voltage is varied from 0.0 V to 1.2 V. The measured phase noise at 1 MHz frequency offset is -114.93 dBc/Hz at the oscillation frequency of 9.99 GHz, and the figure of merit (FOM) of the proposed VCO is -190.0 dBc/Hz.
Citation
Sheng-Lyang Jang, Do Anh Tu, Chia-Wei Chang, and Miin-Horng Juang, "A Low Power Push-Push Differential VCO Using Current-Reuse Circuit Design Technique," Progress In Electromagnetics Research C, Vol. 27, 85-97, 2012.
doi:10.2528/PIERC11101806
References

1. Chen, , Y., K. Mouthaan, and F. Lin, , "Design of X-band and Ka-band Colpitts oscillators using a parasitic cancellation technique," IEEE Trans. Circuits and Systems I,, Vol. 57, No. 8, , 1817-1828, Aug. 2010..
doi:10.1109/TCSI.2009.2037399

2. Chen, , Y., K. Mouthaan, and , "Wideband varactorless LC VCO using a tunable negative-inductance cell," IEEE Trans. Circuits and Systems I, Vol. 57, No. 10, 2609-2617, , Oct. 2010.
doi:10.1109/TCSI.2010.2046967

3. Trotta, S., H. Li, V. P. Trivedi, and J. John, "A tunable flipflop-based frequency divider up to 113 GHz and a fully dirrerential 77 GHz push-push VCO in SiGe BiCMOS technology," Radio Frequency Integrated Circuits Symp., 47-50, 2009.

4. Cao, C., E. Seok, and K. K. O, , "192 GHz push-push VCO in 0.13 lm CMOS," Electronics Letters, Vol. 42, No. 4, 9-10, Feb. 2006.
doi:10.1049/el:20064159

5. Molavi, , R., S. Mirabbasi, and H. Djahanshahi, , "A 27-GHz low-power push-push LC VCO with wide tuning range in 65nm CMOS," IEEE Int. Symp. Circuits and Systems, 1141-1144, , 2011.

6. Degani, , O., S. Ravid, and , "Differential output, transformer coupled push-push VCO and divider for 60 GHz applications in 90nm CMOS," IEEE Int. Conf. Microwaves, Communications Antennas and Electronics Systems, , 1-4, , 2009.

7. Yazdi, , A., M. M. Green, and , "A 40 GHz di®erential push-push VCO in 0.18 ¹m CMOS for serial communication," IEEE Microw. Wireless Compon. Lett., Vol. 19, 725-727., 2009.
doi:10.1109/LMWC.2009.2032016

8. Wong, , J. M. C. and H. C. Luong, "A 1.5-V 4-GHz dynamic-loading regenerative frequency doubler in a 0.35-¹m CMOS process," IEEE Trans. Circuits and Systems I, Vol. 50, No. 8, 450-455, Aug. 2003.

9. Yang, , C.-Y., C.-H. Chang, J.-H.Weng, and H.-M.Wu, "A 0.5/0.8-V 9-GHz frequency synthesizer with doubling generation in 0.13-um CMOS, ," IEEE Trans. on Circuits and Systems-II: Express Briefs , Vol. 58, No. 2, 65-69, , Feb. 2011.
doi:10.1109/TCSII.2010.2092830

10. Lee, , O., J.-G. Kim, K. Lim, J. Laskar, and S. Hong, , "A 60 GHz push-push InGaP HBT VCO with dynamic frequency divider," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 10 , 679-681, 2005.
doi:10.1109/LMWC.2005.856847

11. Kim, , H.-R., C.-Y. Cha, S.-M. Oh, M.-S. Yang, and S.-G. Lee, "A very low-power quadrature VCO with back-gate coupling," IEEE J. Solid-State Circuits, Vol. 39, No. 6, 952-955, , Jun. 2004.
doi:10.1109/JSSC.2004.827798

12. Jang, S.-L., C.-C. Shih, C.-C. Liu, and M.-H. Juang, "A 0.18um CMOS quadrature VCO using the quadruple push-push technique," IEEE Microw. Wireless Compon. Lett., Vol. 20, 343-345, Jun. 2010.
doi:10.1109/LMWC.2010.2047525

13. Chang, , H.-C., X. Cao, U. K. Mishra, and R. A. York, "Phase noise in coupled oscillators: Theory and experiment," IEEE Trans. Microw. Theory Techn., 45-5, , May 1997.

14. Ramirez, F., M. Ponton, S. Sancho, and A. Suarez, "Stability analysis of oscillation modes in quadruple-push and Rucker's oscillators ," IEEE Trans. Microw. Theory Techn., Vol. 56, No. 11, 2648-2661, Nov. 2008.
doi:10.1109/TMTT.2008.2005921

15. Liao, , Y.-S., C. F. Jou, and , "X-band low phase noise quadrature CMOS VCO with transformer feedback ," PIERS Proceedings, Mar. 2008.

16. Jang, , S.-L., Y.-S. Chen, C.-C. Liu, and M.-H. Juang, "A 33% tuning range voltage-controlled oscillator robust to environmental variation," Micro. and Opti. Tech. Lett., 517-519, , Mar. 2011.
doi:10.1002/mop.25775

17. Oh, N.-J., S.-G. Lee, and , "11-GHz CMOS differential VCO with back-gate transformer feedback," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 733-735, , Nov. 2005..
doi:10.1109/LMWC.2005.858994

18. Jang, , S.-L., S.-S. Lin, C.-W. Chang, and S.-H. Hsu, , "Quadrature VCO formed with two Colpitts VCO coupled via an LC-ring resonator ," Progress In Electromagnetics Research C,, Vol. 24, 185-196, 2011.
doi:10.2528/PIERC11081904