Vol. 23
Latest Volume
All Volumes
PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-08-03
Parameter Estimation of LFM Signal Intercepted by Synchronous Nyquist Folding Receiver
By
Progress In Electromagnetics Research C, Vol. 23, 69-81, 2011
Abstract
Nyquist folding receiver (NYFR) is a new kind of interception architecture, which can simultaneously intercept wideband signals in multi-Nyquist zones with one or two analog-to-digital converters (ADCs). A parameter estimation algorithm of the linear frequency modulated (LFM) signal intercepted by an improved NYFR is presented. Firstly, the NYFR is improved by introducing a synchronous mechanism, and we denote this structure as a synchronous NYFR (SNYFR). Secondly, taking LFM as an example, the input and output noise distributions of an SNYFR are discussed. Then, a fast parameter estimation algorithm is derived from the frequency spectrum of the output signal, and an advice for the design of local oscillator signal is given. Simulations show that the parameter estimation accuracy is close to the maximum likelihood when the signal to noise ratio (SNR) is above -3 dB.
Citation
Deguo Zeng, Hao Cheng, Jun Zhu, and Bin Tang, "Parameter Estimation of LFM Signal Intercepted by Synchronous Nyquist Folding Receiver," Progress In Electromagnetics Research C, Vol. 23, 69-81, 2011.
doi:10.2528/PIERC11062801
References

1. Jiang, T., S. Qiao, Z.-G. Shi, L. Peng, J. Huangfu, W.-Z. Cui, W. Ma, L.-X. Ran, "Simulation and experimental evaluation of the radar signal performance of chaotic signals generated from a microwave colpitts oscillator," Progress In Electromagnetics Research, Vol. 90, 15-30, 2009.
doi:10.2528/PIER08120104

2. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor localization technique using a UWB radar," Progress In Electromagnetics Research, Vol. 98, 75-95, 2009.
doi:10.2528/PIER09100705

3. Chen, D. and C.-H. Cheng, "A novel compact ultra-wideband (UWB) wide slot antenna with via holes," Progress In Electromagnetics Research, Vol. 94, 343-349, 2009.
doi:10.2528/PIER09062306

4. Zhang, J., J. Wu, W. Liu, C. Qiao, and L. Wang, "Clock study of high speed interleaving/multiplexing data-acquisition system," Journal of University of Science and Technology of China, Vol. 36, No. 3, 281-284, 2006.

5. Velazquez, S. R., T. Q. Nguyen, and S. R. Broadstone, "Design of hybrid filter banks for analog/digital conversion," IEEE Trans. Signal Processing, Vol. 46, No. 4, 956-967, 1998.
doi:10.1109/78.668549

6. Namgoong, W., "A channelized digital ultrawideband receiver," IEEE Trans. Wireless Communications, Vol. 2, No. 3, 502-510, 2003.
doi:10.1109/TWC.2003.811177

7. Hoyos, S., B. M. Sadler, and G. R. Arce, "Ultra-wideband analog-to-digital conversion via signal expansion," IEEE Trans. Vehicular Technology, Vol. 54, No. 5, 1609-1622, 2005.
doi:10.1109/TVT.2005.856195

8. Donoho, D. L., "Compressed sensing," IEEE Trans. Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

9. Chi, Y. J., L. L. Scharf, A. Pezeshki, and A. R. Calderbank, "Sensitivity to basis mismatch in compressed sensing," IEEE Trans. Signal Processing, Vol. 59, No. 5, 2182-2195, 2011.
doi:10.1109/TSP.2011.2112650

10. Migliore, M. D., "A compressed sensing approach for array diagnosis from a small set of near-field measurements," IEEE Trans. Antennas and Propagation, Vol. 59, No. 6, 2127-2133, 2011.
doi:10.1109/TAP.2011.2144556

11. Laska, J. N., S. Kirolos, M. F. Duarte, T. S. Ragheb, R. G. Baraniuk, and Y. Massoud, "Theory and implementation of an analog-to-information converter using random demodulation," IEEE International Symposium on Circuits and Systems, 1959-1962, 2007.
doi:10.1109/ISCAS.2007.378360

12. Tropp, J. A., M. B. Wakin, M. F. Duarte, D. Baron, and R. G. Baraniuk, "Random filters for compressive sampling and reconstruction," IEEE International Conference on Acoustics, Speech and Signal Processing, 872-875, 2006.

13. Yang, D., H. Li, G. D. Peterson, and A. Fathy, "Compressed sensing based UWB receiver: hardware compressing and FPGA reconstruction," 43rd Annual Conference on Information Sciences and Systems, 198-201, 2009.

14. Fudge, G. L., R. E. Bland, M. A. Chivers, S. Ravindran, J. Haupt, and P. E. Pace, "A Nyquist folding analog-to-information receiver," 42nd Asilomar Conference on Signals, Systems and Computers, 541-545, 2008.

15. Liu, Y., "Fast dechirp algorithm," Journal of Data Acquisition and Processing, Vol. 14, No. 2, 175-178, 1999.