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Abstract—Nyquist folding receiver (NYFR) is a new kind of intercep-
tion architecture, which can simultaneously intercept wideband signals
in multi-Nyquist zones with one or two analog-to-digital converters
(ADCs). A parameter estimation algorithm of the linear frequency
modulated (LFM) signal intercepted by an improved NYFR is pre-
sented. Firstly, the NYFR is improved by introducing a synchronous
mechanism, and we denote this structure as a synchronous NYFR
(SNYFR). Secondly, taking LFM as an example, the input and output
noise distributions of an SNYFR are discussed. Then, a fast param-
eter estimation algorithm is derived from the frequency spectrum of
the output signal, and an advice for the design of local oscillator signal
is given. Simulations show that the parameter estimation accuracy is
close to the maximum likelihood when the signal to noise ratio (SNR)
is above −3 dB.

1. INTRODUCTION

Many modern radars have very high carrier frequencies or wide
operating bandwidths [1–3]. First, the electronic support measurement
(ESM) receiver is often non-cooperative with the radar transmitter
and needs frequency wide open to cover most of the frequency range
of hostile radar signals to complete effective interception. The ideal
ESM receiver should be able to intercept the whole radar frequency
range, namely about 18 GHz or 30GHz. In addition, the digital ESM
receiver, which is the main system for the current ESM, has many
advantages over the analog one in signal processing flexibility and
analysis precision. In conclusions, a good ESM receiver should combine
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the wideband demand and the digital processing advantages. However,
to the existing analog-to-digital converter (ADC) level of development,
the sampling rate of commercially available off-the-shelf ADC is often
less than 5GHz, and it is difficult to directly sample the signals in radio
frequency in such a wide frequency range about 18GHz or 30 GHz.
Therefore, how to use the existing ADC to sample the signal as wide
as possible is a research hotspot for the ESM receiver.

In the past few decades, some methods on this topic have
been presented. High speed interleaving/multiplexing data-acquisition
system [4] is a typical technology which uses multiple low-speed ADCs
to sample the signals alternately in time in order to improve the
system’s equivalent sampling rate. However, this method requires
high time resolution and the channel timing correction. The design
of hybrid filter banks for analog/digital conversion adopts a set of
analog bandpass filters to reduce the bandwidth of each channel, and
samples each channel with a low-speed ADC [5, 6]. Then, this kind of
system needs a huge amount of equipment and has strict limitations
in the performances of the filters. Analog-to-digital conversion via
signal expansion is also a method to reduce the demands for ADC,
and performs sampling in a transform domain, which is obtained by
the signal projection on the spaces, such as frequency or wavelet space.
For the signal reconstruction problem, this method requires a large
number of low-speed ADCs to meet the accuracy requirements [7].

These technologies all use multiple low-speed ADCs to complete
wideband signal acquisition, failing to solve the problems using single
or dual low-speed ADCs to sample the whole interception wideband.
Some new ways have been presented in the past few years. Compressed
sensing (CS) theory [8–10] shows that if a signal is compressible or
sparse in a certain transform domain, we can reconstruct the signal
from the received signal with a high probability by introducing a signal
independent observation matrix and an optimal solution algorithm.
Typical CS receivers which could be used in ESM include the CS
receiver using random demodulation [11] and the one with random
filters for compressive sampling and reconstruction [12]. These two
architectures both use one ADC. The distributed ultra-wideband
amplifier receiver system is another kind of CS receiver which uses low-
speed ADCs to achieve the sampling [13]. However, how to determine
the sparse domains of the received signals in a non-cooperative case
and quickly find the optimal solution still need to be studied.

Inspired by CS, Fudge proposed the Nyquist folding receiver
(NYFR) [14]. The NYFR modulates the received analog signal in the
front-end of the receiver, maps the Nyquist zone information to the
modulation bandwidth of the signal, and then samples the modulated
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signal. The Nyquist zone could be estimated from the bandwidth of the
modulated signal. By changing the modulation type and the number
of zones, we can use single or dual ADCs without frequency sweeping
to cover the whole interception frequency in theory.

NYFR uses zero crossing rising voltage time to control the
radio frequency sample clock and would be easily affected by noise.
Moreover, the analog part and the digital part are not synchronized,
and the initial phase of the received signal would be lost. This
paper presents an improved structure marked as a synchronous NYFR
(SNYFR) and shows an algorithm to the parameter estimation of
classical linear frequency modulated (LFM) signal.

2. SNYFR

2.1. Structure for SNYFR

The structure of an SNYFR is shown in Fig. 1. To facilitate the
follow-up derivation, we assume that the input analog signal has been
preprocessed into I/Q signals. First, the input signal is filtered by
a ultra wideband (UWB) filter (LPF1), whose bandwidth is BI , to
remove the out-of-band noise to get the complex signal x(t). Then,
x(t) is mixed by the UWB complex local oscillator signal (LOS) p(t) to
obtain the modulated signal r(t) = x(t)p∗(t) where the mark ∗ stands
for complex conjugation, and r(t) is filtered by the second complex low-
pass filter (LPF2) h(t) with the passband [−fs/2 fs/2] to get the signal
s(t), where fs is the sampling rate for digital signal processing. Finally,
sample s(t) by the rate fs to obtain x(n). The p(t) is generated by the
digital analog converter (DAC) and direct digital synthesizer (DDS),
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Figure 1. Block diagram of the SNYFR.
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where the DDS is synthesized by the digital signal p(n) which includes
fs, the phase θ(n) and the initial phase φ0. The instantaneous phase
φ(n) = θ(n) + φ0 corresponding to center frequency fs of p(n) is also
sent to digital signal processor (DSP) for synchronization. BI could be
18GHz or 30 GHz. Note that this structure uses dual ADCs to cover
the whole interception frequency range.

2.2. Output of SNYFR

We take the classical LFM signal as an example to determine the
output of the SNYFR. Assume the signal after LPF1 be

x(t) = Aej[2π(f0t+K0t2/2)+φ0] + n1(t) (1)

where A, f0, K0 and φ0 are the amplitude, frequency, chirp rate and
initial phase, respectively. n1(t) is white Gaussian noise distributed in
[0 Kfs). The noise power is N0, and the power density is N0/(Kfs).
The signal to noise ratio (SNR) of x(t) is A2/N0.

Define the kth Nyquist zone as f ∈ [kfs, (k +1)fs), k ∈ [0,K− 1],
where K is the number of zones. The NYFR adopts different
bandwidths to represent different Nyquist zones, then the LOS could
be

p (t) =
∑K−1

k=0
ej{2πfst/2+k[2πfst+θ(t)+φLOS ]} (2)

where θ(t) and φLOS are the instantaneous phase and initial phase of
the zone 1, respectively.

Then,

r(t) = x(t)p∗(t)

= A
∑K−1

k=0
ej[2π(f0t+K0t2/2−fst/2)+φ0−k[2πfst+θ(t)+φLOS ]]

+n1(t)
∑K−1

k=0
e−j{2πfst/2+k[2πfst+θ(t)+φLOS ]}

= A
∑K−1

k=0
ej{2π(f0t+K0t2/2−fst/2)+φ0−k[2πfst+θ(t)+φLOS ]}+n2(t) (3)

where n2(t) = n1(t)
∑K−1

k=0 e−j{2πfst/2+k[2πfst+θ(t)+φLOS ]}.
After filtered by LPF2, we have

s(t) = r(t)⊗ h(t)

= Aej[2π(f0t+K0t2/2−fst/2)+φ0−βf0,K0
(t)[2πfst+θ(t)+φLOS ]]

+n3(t) (4)

where βf0,K0(t) ≈ round((f0 + K0t− fs/2)/fs), n3(t) = n2(t)⊗ h(t).
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After sampling,
x(n) = s(nTs)

= Aej[2π(f0nTs+K0(nTs)
2/2−n/2)+φ0−βf0,K0

(nTs)[θ(nTs)+φLOS ]]

+n3(nTs)
= s0(n) + n3(nTs) (5)

where s0(n)=Aejφ0e{j[2π(f0nTs+K0(nTs)2/2−n/2)−βf0,K0
(nTs)[θ(nTs)+φLOS ]]}.

Equation (5) shows that x(t) is turned into x(n) through the
SNYFR. As the digital signal x(n) has a periodic frequency fs, the
digital frequency is just the remainder of the absolute frequency
modulo fs, losing the modulus information. However, x(n) is
modulated by additional LOS modulation βf0,K0(nTs)[θ(nTs)+φLOS ],
where βf0,K0(nTs) is the modulus. In this case, the modulus and
remainder have been both retained, hence we could recover the absolute
frequency from the digital LOS modulation. For the amplitude and
initial phase, θ(nTs) + φLOS is a prior, and if we estimate βf0,K0(nTs)
correctly, these parameters could also be estimated. In short, the
SNYFR keeps the different parameters of the received signal x(t) in
different ways, so we do not lose the information of the signal.

The noise distribution is shown in Fig. 2. In [−fs/2, fs/2], n3(t)
and n3(nTs) are both white Gaussian noise. The noise power is∑K−1

k=0 N0/(Kfs) = N0 and the power density is N0/fs. Then, the
SNR of the output of the SNYFR is the same as the input of that, i.e.,
A2/N0, while, the output noise power density is much larger than the
input one. Moreover, the relationship between BI and K is

BI = Kfs (6)
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Figure 2. Noise distribution.



74 Zeng et al.

3. PARAMETER ESTIMATION OF THE RECEIVED
SIGNAL

In ESM receiver, we mainly concern the estimation of frequency
parameters, such as the initial frequency and chirp rate (or bandwidth),
so we just estimate the two parameters. In order to facilitate the
description of the principle, we assume that the received signal just
contains a single LFM.

3.1. Maximum Likelihood Estimation

x(n) could be expressed in matrix form,

x = h(d)A0(θ) + n3 (7)

where A0(θ) = A exp(jφ0), x = [x(0), x(1), . . . , x(N − 1)]T ,
d = [ f0 K0 ]T , h = [h(0), h(1), . . . , h(N − 1)]T , θ =
[ A φ0 ]T , n3 = [n3(0), n3(1), . . . , n3(N − 1)]T and h(n) =
ej[2π(f0nTs+K0(nTs)2/2−n/2)−βf0,K0

(nTs)[θ(nTs)+φLOS ]].
The probability density function of x(n) is

p (x;d, θ) =
1

πNNN
0

e
− 1

N0
[x−h(d)A0(θ)]H [x−h(d)A0(θ)] (8)

The maximum likelihood (ML) estimation is
(
d̂, θ̂

)
= arg min

d,θ

{
[x− h(d)A0(θ)]

H [x− h(d)A0(θ)]
}

(9)

Then,

d̂ = arg max
d

{
xH

{
h(d)

[
hH(d)h(d)

]−1
hH(d)

}
x
}

= arg max
d

1
N

{(
hH(d)x

)H
hH (d)x

}
(10)

A0

(
θ̂
)

=
1
N

hH
(
d̂
)
x (11)

We could estimate the parameters of x(t) from (10) and (11).

3.2. Fast Parameter Estimation Algorithm

The ML algorithm for the estimation of the initial frequency and chirp
rate needs a two dimension search, where the frequency search range
should be from 0 to 18GHz or 30 GHz. Taking the step size 10KHz as
an example, we need about (30G/10K)× (30G/10K) = 9× 1012 grid
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search to determine the estimation. This computational complexity is
heavy. We present the following fast estimation algorithm.

First, we consider the condition that the signal is just in one
Nyquist zone, i.e., f0 + K0t ∈ [kfs (k + 1)fs), then βf0,K0(nTs) ≈ kf0 ,
and

x(n) = Aej[2π(f0nTs+K0(nTs)2/2−n/2)+φ0−kf0
[θ(nTs)+φLOS ]]

+n3(nTs)

= Aej[2π(f0nTs+K0(nTs)2/2−n/2)+φ0]ej[−kf0
[θ(nTs)+φLOS ]]

+n3(nTs)
= AxLFM (n)xLOS(n) + n3(nTs) (12)

Let yk(n) = x(n)x(k)
LOS(n), where x

(k)
LOS(n) = ej[k[θ(nTs)+φLOS ]],

then

yk(n) = [AxLFM (n)xLOS(n) + n3(nTs)]x
(k)
LOS(n)

= AxLFM (n)xLOS(n)x(k)
LOS(n) + n3(nTs)x

(k)
LOS(n)

= AxLFM (n)x
(k−kf0

)

LOS (n) + n3(nTs)x
(k)
LOS(n) (13)

When k 6= kf0 , xLFM (n) has a convolution with x
(k−kf0

)

LOS (n) in
frequency, extending the range of the spectrum of the pure signal. Since
the total energy is constant, compared with k = kf0 , the energy for each
unit of frequency for the pure signal would drop, and the maximum
energy of the spectrum will be correspondingly reduced. Moreover,
n3(nTs) would also have a convolution with x

(k)
LOS(n) in frequency, and

the distribution of noise would be changed. If the SNR for yk(n) is

high enough that the spectrum peak of AxLFM (n)x
(k−kf0

)

LOS (n) is higher
than the one of n3(nTs)x

(k)
LOS(n), the maximum value of the spectrum

of ykf0
(n) would be the maximum in all k. Further, a greater spectrum

peak would be got for those x
(k)
LOS(n) with smaller wideband, then the

distribution of the noise for different k would be different.
In summary, we can do Fourier transform for all yk(n), and

determine k, where the maximum value of the Fourier transform is the
largest, as the estimation of kf0 . The probability of correct decision
(PCD) for small kf0 would be less than the one for large kf0 .

There are some advices for choosing the LOS. From the previous
paragraph, we know that the PCD would be related with the
bandwidth of the LOS for different kf0 . If we want to have the
same PCD for different kf0 , the bandwidths for different kf0 should
be the same. Then, the LOS could have the same bandwidth for
different kf0 and the Nyquist zone information should be contained
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in other parameter rather than bandwidth. We could adopt phase
shift-keying (PSK) signal which has different codes in different zones
to modulate the received signal, and demodulate the signal in digital
part to estimate the zones. However, the spectrum of PSK has a larger
variance, so is the variance of n3(nTs)x

(k)
LOS(n), making the difference

between the maximum of spectrum of pure signal and the noise
smaller. Then, the ideal LOS needs a smaller variance in spectrum.
Consequently, the zone-dependent white noise with fixed bandwidth
for different zones is one kind of ideal LOS.

Second, when LFM belongs to two zones, namely the kf0th and
kf0 + 1th zones, and n = N0 is the turning point from the kf0th to
kf0 + 1th zone, then

x(n) = Aej[2π(f0nTs+K0(nTs)2/2−n/2)+φ0−kf0
[θ(nTs)+φLOS ]]µ(1, N0)

+Aej[2π(f0nTs+K0(nTs)2/2−n/2)+φ0−(kf0
+1)[θ(nTs)+φLOS ]]µ(N0 + 1, N)

+n3(nTs)

= Aej[2π(f0nTs+K0(nTs)2/2−n/2)+φ0−kf0
[θ(nTs)+φLOS ]]κ(N0) + n3(nTs)

= AxLFM (n)xLOS(n)κ(N0) + n3(nTs) (14)

where µ(a, b) =
{

1, n ∈ [a, b]
0, otherwise and κ(N0) = µ(1, N0) +

e−j[θ(nTs)+φLOS ]µ(N0 + 1, N).
Then,

yk(n,N0) = [AxLFM (n)xLOS(n) + n3(nTs)]x
(k)
LOS(n)κ∗(N0)

= AxLFM (n)xLOS(n)κ(N0)x
(k)
LOS(n)κ∗(N0)

+n3(nTs)x
(k)
LOS(n)κ∗(N0) (15)

Similar to the condition that the LFM signal is just in one
Nyquist zone, we can compute the Fourier transform of yk(n,N0) under
different k and N0, and treat the k and N0 whose maximum spectrum
is the largest as the estimates of N0 and kf0 .

Finally, when the LFM signal belongs to M different zones, assume
N0, N1, . . . , NM−1 are the turning points, then

x(n) = AxLFM (n)xLOS(n)κ(N0, N1, . . . , NM−1) + n3(nTs) (16)

where κ(N0) = µ(1, N0) + e−j[θ(nTs)+φLOS ]µ(N0 + 1, N1) +
e−j2[θ(nTs)+φLOS ] ×µ(N1 +1, N2)+ . . .+e−j(M−1)[θ(nTs)+φLOS ]µ(NM−1 +
1, N).

Since the instantaneous frequency of the LFM signal is
proportional to time, then we have

∆N = N2 −N1 = N3 −N2 = . . . = NM−1 −NM−2 (17)
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That is to say, [N1, N2, . . . , NM−1] is an arithmetic sequence, so
κ(N0, N1, . . . , NM−1) in (16) could be rewritten as κ(N0, N1, N1 +
∆N, N1 + 2∆N, . . . , N1 + (M − 2)∆N). Then there are just three
variables {N0, N1, ∆N} in κ, and we can reduce the computational
complexity during the grid search.

From the above analysis, when the parameters {N0, N1, ∆N, k}
of xLOS(n)κ(N0, N1, . . . , NM−1) are matched with the received signal,
we could get the under-sampling signal in (16). For the LFM case, the
signal is still the broadband signal, and the aggregation in frequency,
which is equivalent to the processing gain in frequency, is poor. As
the single tone has the best aggregation in frequency, if we could turn
the LFM signal into a single tone, the processing in frequency would
be much easier. Then the LFM signal could be delayed and have a
conjugated multiplication with the original signal [15], and the signal
is converted to a single tone to improve the aggregation in frequency
to get a higher gain to improve noise immunity.

If the Nyquist zones are estimated, we could do the parameter
estimation with the fast dechirp algorithm [15] which transforms the
estimation of initial frequency and chirp rate (or bandwidth) of the
LFM signal into the estimation of two single tones. Note that the
estimation of the single frequency of chirp rate K̂0 would be located in
Nyquist zone zero, there is no frequency ambiguity problem. However,
we should add Nyquist zone kf0 to the estimation of the initial
frequency.

4. SIMULATION RESULTS

Simulations have been done to verify the performances of the proposed
method. We define PCD and root mean square error (RMSE) to
evaluate the performances of the Nyquist zone detection and parameter
estimation of the LFM signal:

PCD =
∑Q

q=0
(x̂q = x)/Q (18)

The ML is equivalent to

RMSE =
√∑Q−1

q=0
(x̂q − x)2/Q/fs (19)

where x is the true value, x̂q is the estimate of the qth experiment, the
“ = ” of x̂q = x in (18) is a logic symbol, where the value of x̂q = x is
1 when x̂q is equal to x, otherwise 0. Q is the number of experiment.

θ(t) of LOS is a sinusoidal FM signal with modulation bandwidth
40MHz, modulation cycle 0.2µs. The sampling rate fs = 1 GHz.
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4.1. The Outputs of SNYFR, Under-sampling and Nyquist
Sampling

The initial frequency and bandwidth of the LFM signal are 6.3 GHz
and 1.5 GHz, respectively. The pulse width is 1µs. The sampling
rate for under-sampling and Nyquist sampling are 1 GHz and 18 GHz,
respectively. In order to facilitate comparison, we do 500MHz digital
down-conversion to the signal before under-sapling. Fig. 3 shows the
instantaneous frequencies for each sampling. It’s found that, the under-
sampling contains the remainder of the absolute frequency modulo
sampling rate, losing the modulus information. While, the SNYFR
keeps the modulus which could be used to recover the signal.

4.2. Nyquist Zone Detection Performance

In Section 3, we discussed the Nyquist zone detection algorithms
where the LFM signal lies in one zone and multi-zones, respectively.
In simulations, we simulate one zone condition with the 6th zone
where the initial frequency is 6.3GHz and the bandwidth are 0.2MHz,
0.5MHz and 0.7 MHz, and two zones condition with 6th and 7th
zones where the initial frequency is 6.3GHz and the bandwidth are
0.8GHz, 1 GHz and 1.5 GHz. The pulse widths are 0.5µs and 1 µs.
Fig. 4(a) shows the one zone condition. When the SNR is greater
than −4 dB, the PCD is greater than 90%. Fig. 4(b) shows the two
zones condition and the PCD is greater than 90% when the SNR is
greater than −3 dB. Compared with the one zone case, the detection
of the multi-zones needs to estimate additional parameters, and there
are some performance loss. Moreover, the PCD corresponding to long
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pulse width is greater than those of short pulse widths due to the time
accumulation effect. For the same pulse width, the PCD corresponding
to greater bandwidth would be smaller than those corresponding to
smaller bandwidths due to the expanding effect of wideband signal in
frequency.

4.3. Parameter Estimation of the LFM Signal

After zone detection, we estimate the parameters using the ML
estimation and fast algorithms, respectively. The initial frequency and
bandwidth are 6.373111GHz and 0.5872111 GHz, respectively. The
pulse width is 0.5µs. The results are shown in Fig. 5. When the SNR
is greater than −4 dB, the performance is close to the ML one.
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4.4. Computational Complexity of the Proposed Algorithm
for SNYFR
We take the condition where LFM lies in two Nyquist zones as
an example to show the computational complexity of the proposed
algorithm. Assume that the interception wideband and sampling rate
are 30 GHz and 1 GHz, respectively, and the number of samples is
N = 1024. Then, we have K = 30. Since kf0 ∈ [0,K − 1] and for
SNYFR, we just need to search NK = 1024 × 30 = 30720 grids to
find the maximum value to estimate the kf0 and N0 to determine the
Nyquist zone information. For the estimation of parameters of LFM,
we just need two fast Fourier transforms [15], which could be ignored
compared with the grid search. So, the computational complexity is
far less than the one of ML.

5. CONCLUSION

We proposed the SNYFR which could sample the wideband signal
located in multi-Nyquist zones using two ADCs. Taking the LFM
signal as an example, we showed that the output SNR was equal to
the input one, while, the noise power density was much higher than
the input one. The algorithm for the estimation of the LFM signal
located in multi-zones was also discussed, and the performance was
stable when SNR was greater than −3 dB. Note that we proposed a
prototype for SNYFR using different bandwidths to represent different
zones. Using other modulations to represent the zones and exploiting
their corresponding parameter estimation algorithms are in the next
step of the research content. Moreover, the processing of multiple
signals and detection of Nyquist zones in the well developed signal
detection framework will be detailed further.
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