Vol. 23
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-08-07
Maximum Likelihood Estimation of Co-Channel Multicomponent Polynomial Phase Signals Using Importance Sampling
By
Progress In Electromagnetics Research C, Vol. 23, 111-122, 2011
Abstract
Unlike some traditional polynomial phase signal (PPS) parameter estimation methods restricted to monocomponent case, this paper focuses on the parameter estimation of multicomponent PPSs mixed in a single channel, which is more sophisticated and always involves the cross-term issue. In this investigation, based on the model of multicomponent PPSs in additional white Gaussian noise, we partition the maximum likelihood estimation into two consecutive steps. The first one involving estimation of polynomial coefficients is intensively studied using importance sampling, while the second one involving the estimation of amplitude and initial phase is trivial. Numerical experiments show satisfactory estimation performance even if the parameters are closely spaced.
Citation
Hao Cheng, Deguo Zeng, Jun Zhu, and Bin Tang, "Maximum Likelihood Estimation of Co-Channel Multicomponent Polynomial Phase Signals Using Importance Sampling," Progress In Electromagnetics Research C, Vol. 23, 111-122, 2011.
doi:10.2528/PIERC11062010
References

1. Abatzoglou, T. J., "Fast maximum likelihood joint estimation of frequency and frequency rate," IEEE Transactions on Aerospace and Electronic Systems, Vol. 22, No. 6, 708-715, 1986.
doi:10.1109/TAES.1986.310805

2. Angeby, J., "Estimating signal parameters using the nonlinear instantaneous least squares approach," IEEE Transactions on Signal Processing, Vol. 48, No. 10, 2721-2732, 2000.
doi:10.1109/78.869022

3. Pham, D. S. and A. M. Zoubir, "Analysis of multicomponent poly-nomial phase signals," IEEE Transactions on Signal Processing, Vol. 55, No. 1, 56-65, 2007.
doi:10.1109/TSP.2006.882085

4. Peleg, S. and B. Porat, "Estimation and classification of polynomial-phase signals," IEEE Transactions on Information Theory, Vol. 37, No. 2, 422-430, 1991.
doi:10.1109/18.75269

5. Peleg, S. and B. Friedlander, "The discrete polynomial-phase transform," IEEE Transactions on Signal Processing, Vol. 43, No. 8, 1901-1914, 1995.
doi:10.1109/78.403349

6. Porat, B. and B. Friedlander, "Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals ," IEEE Transactions on Information Theory, Vol. 42, No. 3, 995-1001, 1996.
doi:10.1109/18.490563

7. Peleg, S. and B. Friedlander, "Multicomponent signal analysis using the polynomial-phase transform," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 1, 378-387, 1996.
doi:10.1109/7.481277

8. Kay, S. and S. Saha, "Mean likelihood frequency estimation," IEEE Transactions on Signal Processing, Vol. 48, No. 7, 1937-1946, 2000.
doi:10.1109/78.847780

9. Saha, S. and S. M. Kay, "Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling ," IEEE Transactions on Signal Processing, Vol. 50, No. 2, 224-230, 2002.
doi:10.1109/78.978378

10. Kay, S. M., Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory, 1993.

11. Pincus, M., "A closed form solution for certain programming problems," Oper. Res., 690-694, 1962.

12. Stoica, P. and A. Nehorai, "MUSIC, maximum likelihood, and Cramer-Rao bound," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 5, 720-741, 1989.
doi:10.1109/29.17564

13. Yau, S. F. and Y. Bresler, "A compact Cramer-Rao bound expression for parametric estimation of superimposed signals," IEEE Transactions on Signal Processing, Vol. 40, No. 5, 1226-1230, 1992.
doi:10.1109/78.134484