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Abstract—Unlike some traditional polynomial phase signal (PPS)
parameter estimation methods restricted to monocomponent case, this
paper focuses on the parameter estimation of multicomponent PPSs
mixed in a single channel, which is more sophisticated and always
involves the cross-term issue. In this investigation, based on the
model of multicomponent PPSs in additional white Gaussian noise,
we partition the maximum likelihood estimation into two consecutive
steps. The first one involving estimation of polynomial coefficients
is intensively studied using importance sampling, while the second
one involving the estimation of amplitude and initial phase is trivial.
Numerical experiments show satisfactory estimation performance even
if the parameters are closely spaced.

1. INTRODUCTION

The polynomial phase signal (PPS) has been flourishing in radar in
recent years. Moreover, in fields such as radio communications and
sonar technology, the involved signals are always nonstationary and
have the property of continuous instantaneous phase. Based on the
Weierstrass’ theorem, these signals can be well approximated by a PPS
with finite order phase, if the instantaneous phase is within a closed
interval.

Thus far, most parameter estimation algorithms of PPS have
focused on monocomponent case. These algorithms can be reduced
into two categories, the estimation from the statistical theory and the
one from a transform. Algorithms from the former category include
maximum likelihood (ML) estimation [1], nonlinear instantaneous least
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squares (NILS) [2], nonlinear least squares (NLS) [3], and others,
while those from the latter are mainly based on the principle of the
polynomial phase transform (PPT) [4–6].

Nevertheless, both above-mentioned categories have issues when
directly applied to estimate the parameters of the multicomponent
PPSs mixed in a single channel. Firstly, algorithms from
statistical theories, for example, the ML estimation, will suffer more
computational burden for its multidimensional grid search than in
the case of monocomponent, or need an appropriate guess of the
initial value when using an iterative optimizer. Secondly, algorithms
from PPT would be affected by the cross-term issue, which arguably
exists in multicomponent case. For the parameter estimation of
multicomponent PPSs, literature [7] gives some theoretical analysis
using the PPT.

Motivated by the assumption that the likelihood function in ML
estimation is regarded as a pseudo probability density function (PDF),
from which the optimization problem could be solved using drawn
samples, this paper develops a ML parameter estimation algorithm of
co-channel multicomponent PPSs using importance sampling, which is
utilized for generating samples from a complex PDF. It extends the
studies of [8] and [9], which used importance sampling to estimate
frequencies of multicomponent sinusoids and estimate the initial
frequencies and chirp rates of chirp signals, respectively. Moreover,
this method is also referred to as mean likelihood estimation in [8].

The remainder of this paper is organized as follows. Section 2
introduces a different expression of the PPS whose polynomial
coefficients (PCs) are converted into a common scale for convenience,
and partitions ML estimation into two consecutive steps. Section 3
derives the importance sampling estimator of multicomponent PPSs.
Section 4 summarizes the steps of the algorithm. Section 5 gives
the Cramer-Rao lower bounds (CRLBs) of multicomponent PPSs.
Section 6 presents the experimental results of our algorithm and is
followed by the conclusion in Section 7.

2. PROBLEM FORMULATION

2.1. Signal Model with Normalized PCs

The signal model for the superimposed PPSs with the discrete time in
additional white Gaussian noise is

x(n) =
P∑

p=1

A(p)e
j

(
φ

(p)
0 +2π

K∑
k=1

c(p,k)
(

n
fs

)k
)

+ w(n) (1)
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where n = 0, 1, . . . , N − 1, with N denoting the number of data
samples, A(p) and φ

(p)
0 are the amplitude and the initial phase of the

pth PPS, respectively, c(p,k) is the kth order PC of the pth PPS, fs is
the sampling rate, and w(n) denotes white Gaussian noise with zero
mean and variance σ2. Unlike expressions which appear in some other
literatures, for the convenience of our algorithm, first we normalize
each PC c(p,k) to a common scale as opposed to the sampling rate. For
a single PPS, assuming φ0 and c(k) denote the initial phase and the
kth order PC, respectively, the instantaneous phase is presented as

φ(n) = φ0 + 2π

K∑

k=1

c(k)

fk
s

nk, (2)

and the normalized instantaneous frequency is

f(n) =
φ′(n)
2π

=
K∑

k=1

k
c(k)

fk
s

nk−1 =
K∑

k=1

d(k)
( n

N

)k−1
(3)

where the mark ′ means derivative and d(k) = kNk−1c(k)
/
fk

s is defined
as the normalized PC which has the same scale as opposed to the
sampling rate.

Assuming each d(k) > 0, the normalized instantaneous frequency
f(n) is within the range from d(1)(n = 0) to d(1) + d(2) + . . . +
d(K)(n = N − 1), where N is assumed to be large enough. Specifically,
for K = 2, the PPS is a chirp signal with a normalized initial frequency
d(1) and a normalized bandwidth d(2). Without loss of generality, in
the following, fs is fixed to 1 and the term ‘normalized’ is omitted.

Thus, using this expression, the signal model could be expressed
as

x(n) =
P∑

p=1

A(p)e
j

(
φ

(p)
0 +2π

K∑
k=1

d(p,k) nk

kNk−1

)

+ w(n) (4)

where d(p,k) = kNk−1c(p,k)
/
fk

s . The matrix-vector form of (4) is

x = H (D) θ + w (5)

where x=[x(0), x(1), . . . , x(N − 1)]T , w=[w(0), w(1), . . . , w(N − 1)]T ,
θ = [A(1) exp(jφ(1)

0 ), A(2) exp(jφ(2)
0 ), . . . , A(P ) exp(jφ(P )

0 )]T , D =
[d(1),d(2), . . . ,d(K)] with d(k) = [d(1,k), d(2,k), . . . , d(P,k)]T for k =
1, 2, . . . , K, and H(D)=[h(1)(D),h(2)(D), . . . ,h(P )(D)] with h(p)(D) =

[1, exp(j(2π
K∑

k=1

d(p,k)/kNk−1)), . . . , exp(j(2π
K∑

k=1

d(p,k)(N−1)k/kNk−1))]T

for p = 1, 2, . . . , P .
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2.2. ML Estimation

The PDF of the received data is

p (x;D, θ) =
1

πNσ2N
exp

[
− 1

σ2
(x−H (D) θ)H (x−H (D)θ)

]
. (6)

Because of the condition of white Gaussian noise, ML estimation is
equivalent to least square (LS) estimation

(
D̂, θ̂

)
= arg min

D,θ

[
(x−H (D) θ)H (x−H (D)θ)

]
. (7)

Note that x is linearly related to θ while nonlinearly to D. After some
simple derivation, the estimation scheme can be partitioned into two
consecutive steps [3, 8–10]. Firstly, estimate D:

D̂ = arg max
D

[
xH

(
H (D)

(
HH (D)H (D)

)−1
HH (D)

)
x
]
. (8)

Secondly, calculate the estimate of θ:

θ̂ =
(
HH

(
D̂

)
H

(
D̂

))−1
HH

(
D̂

)
x (9)

and obtain Â(p) and φ̂
(p)
0 just from getting the amplitude and angle of

the pth entry of θ̂, respectively.
Since the second step is trivial, we focus on the first one. There are

KP parameters to be estimated. For this optimization, an appropriate
guess of the initial value is crucial if an iterative algorithm is applied,
or the joint search should be conducted on KP dimensions if the grid
search method is applied. Motivated by the results of [8] and [9], we
develop an importance sampling estimator, which is a global optimizer
reducing the computational complexity.

3. IMPORTANCE SAMPLING ESTIMATOR

Define the compressed likelihood function

L (D) = exp
[
ρLxH

(
H (D)

(
HH (D)H (D)

)−1
HH (D)

)
x
]

(10)

and the corresponding normalized version

L̄ (D) =
L (D)∫

. . .
∫

L (D) dd(1)dd(2) . . . dd(K)
(11)

which is refer to as a pseudo PDF. Both the compressed likelihood
function and the pseudo PDF are positive since HH (D)H (D) satisfies
the properties of a positive definite matrix. The maximization of (8) is
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equivalent to the maximization of the pseudo PDF (11). Thus, based
on the theorem [11], we get the estimate

d̂(k) =
∫

. . .

∫
d(k)L̄ (D) dd(1)dd(2) . . . dd(K). (12)

As reported in [9], the global optimum is attained for ρL →∞ while in
practice the value of ρL can be chosen to a finite number for a specific
problem. Eq. (11) provides a closed-form expression for the estimates;
however, this approach also involves multidimensional integration, with
the number of dimensions being the same as that of the grid search in
ML estimation. In this paper, we use Monte Carlo method to solve the
involved integration. Nevertheless, directly generating samples from
the pseudo PDF (11) is tricky. Hence, we use importance sampling
which generates samples via a simpler PDF. Meanwhile, it alleviates
the so-called ‘curse of dimensionality’.

Let ḡ(D) be another pseudo PDF whose samples are easy to be
generated. In importance sampling, the expected value of a function
h(D) with respect to L̄(D) could be converted to

ĥ (D) =
∫

. . .

∫
h (D) L̄ (D) dd(1)dd(2) . . . dd(K)

=
∫

. . .

∫
h (D)

L̄ (D)
ḡ (D)

ḡ (D) dd(1)dd(2) . . . dd(K). (13)

Then it is equivalent to the expected value of h (D)
(
L̄ (D)

/
ḡ (D)

)
with

respect to ḡ (D), which is also referred to as the normalized importance
function. After the samples are drawn, the implementation of (13)
using Monte Carlo approximation is

1
R

R∑

r=1

h
(
D(r)

) L̄
(
D(r)

)

ḡ
(
D(r)

) (14)

where D(r) is the rth realization of D generated from the pseudo PDF
ḡ (D). One issue is the choice of ḡ (D). On the one hand, ḡ (D) should
be simple so that the samples could be easily generated. On the other
hand, ḡ (D) should be similar to L̄ (D) to reduce the variance of the
estimates. To satisfy both requirements, considering HH (D)H (D)
from the pseudo PDF (11) to be an identity matrix multiplied by N ,
the importance function is chosen as

g (D) = exp
[
ρgxH

(
1
N

H (D)HH (D)
)

x
]

=
P∏

p=1

exp
[
ρgI

(
d(p,1), d(p,2), . . . , d(p,K)

)]
(15)
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where

I
(
d(p,1), d(p,2), . . . , d(p,K)

)
=

1
N

∣∣∣∣∣
N−1∑

n=0

x(n) exp

(
−j2π

(
K∑

k=1

d(p,k) nk

kNk−1

))∣∣∣∣∣

2

(16)
and the normalized version of g (D) is

ḡ (D)=
g (D)∫

. . .
∫

g (D) dd(1)dd(2) . . . dd(K)
=

P∏

p=1

ḡ
(
d(p,1), d(p,2), . . . , d(p,K)

)

(17)
where ḡ(d(p,1), d(p,2), . . . ,d(p,K)) is the normalized version of exp[ρgI(d(p,1),

d(p,2), . . . , d(p,K))].
Thus, in a sense, the importance function alleviates the effect

of cross-term, which is crucial in the analysis of multicomponents.
In theory, a moderate value ρg is advisable. On the one hand, one
component may overwhelm others if ρg is too large. On the other hand,
the influence of noise may be magnified to the level of the signals if
ρg is too small. However, as reported in [9], ρg is not a very sensitive
parameter.

4. STEPS OF ALGORITHM

Based on derivation in Section 3, the steps to estimate the PCs are as
follows:

Step 1. Choose a large number M and let δ = 1/M which
determines the resolution. Uniformly divide the range (0, 1) into M
grids, and calculate the importance function from the data at MK

discrete points in a K dimension space. Hence, we obtain each value
of the importance function ḡ(d(m1), d(m2), . . . , d(mK)) corresponding to
the joint coordinate (d(m1), d(m2), . . . , d(mK)) where mk = 1, 2, . . . , M
and d(mk) = (mk − 1)δ for k = 1, 2, . . . ,K.

Step 2. Calculate the marginal PDF:

ḡ
(
d(m1)

)
=

M∑

m2=1

M∑

m3=1

. . .

M∑

mK=1

ḡ
(
d(m1), d(m2), . . . , d(mK)

)
δK−1 (18)

and obtain the cumulative distribution function:

G
(
d(m1)

)
=

m1∑

m=1

ḡ
(
d(m)

)
δ (19)
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Step 3. Calculate the conditional PDF:

ḡ
(
d(m2)

/
d(m1)

)
=

ḡ
(
d(m1), d(m2)

)

ḡ
(
d(m1)

) (20)

where the numerator is calculated by

ḡ
(
d(m1), d(m2)

)
=

M∑

m3=1

M∑

m4=1

. . .

M∑

mK=1

ḡ
(
d(m1), d(m2), . . . , d(mK)

)
δK−2

(21)
and obtain the conditional cumulative distribution function

G
(
d(m2)

/
d(m1)

)
=

m2∑

m=1

ḡ
(
d(m)

/
d(m1)

)
δ. (22)

Similarly, calculate the conditional PDF

ḡ
(
d(m3)

/
d(m1), d(m2)

)
=

ḡ
(
d(m1), d(m2), d(m3)

)

ḡ
(
d(m1), d(m2)

) (23)

where the numerator is calculated by

ḡ
(
d(m1), d(m2), d(m3)

)
=

M∑

m4=1

M∑

m5=1

. . .
M∑

mK=1

ḡ
(
d(m1), d(m2), . . . , d(mK)

)
δK−3

(24)
and obtain the conditional cumulative distribution function

G
(
d(m3)

/
d(m1), d(m2)

)
=

m3∑

m=1

ḡ
(
d(m)

/
d(m1), d(m2)

)
δ. (25)

Then, repeat similar calculations until ḡ(d(mK)/d(m1),d(m2), . . . , d(mK−1))
and G(d(mK)/d(m1), d(m2), . . . , d(mK−1)) are obtained.

Step 4. For an index r = 1, 2, . . . , R, generate random numbers
u(1,1) ∼ U [0, 1], u(1,2) ∼ U [0, 1], . . . , u(1,K) ∼ U [0, 1] for the first
component, where U [0, 1] denotes the uniform distribution ranging
from 0 to 1, and obtain

d(1,1)(r) = arg min
d(m1)

∣∣u(1,1) −G
(
d(m1)

)∣∣

d(1,2)(r) = arg min
d(m2)

∣∣u(1,2) −G
(
d(m2)

/
d(1,1)(r)

)∣∣
. . .

d(1,K)(r) =arg min
d(mK)

∣∣u(1,K)−G
(
d(mK)

/
d(1,1)(r), d(1,2)(r), . . . , d(1,K−1)(r)

)∣∣

(26)
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one by one. Similarly, get d(p,1)(r), d(p,2)(r), . . . , d(p,K)(r), p=2, 3, . . . , P
for the pth component. It should be noted that at least one parameter
in the different parameter pairs {d(p,1), d(p,2), . . . , d(p,K)} is different
from the others. Subsequently, reorder components by arranging
the first order PCs d(1,1)(r), d(2,1)(r), . . . , d(P,1)(r) in ascending order.
Consequently, we get d(k)(r) = [d(1,k)(r), d(2,k)(r), . . . , d(P,k)(r)]T for
k = 1, 2, . . . , K.

Step 5. After R realizations are completed, calculate the circular
mean which replaces the linear mean to reduce the computations. The
estimate of the PC using the circular mean is given by

d̂(k) =
1
2π

∠ 1
R

R∑

r=1

L
(
D(r)

)

g
(
D(r)

) exp
(
j2πd(k)(r)

)
(27)

where the mark ∠ denotes getting the angle of a complex number,
and L(D(r))/g(D(r)) is the importance weight. Note that there is
no normalized operation for both L(D(r)) and g(D(r)), since either
normalized number is a constant for any r and can be ignored in the
computation of the angle.

Briefly, the computational complexity of this algorithm con-
sists of two parts. The first one is from the calculation of
ḡ

(
d(m1), d(m2), . . . , d(mK)

)
as well as other conditional PDFs in a K

dimension space, which is common for all components, while the sec-
ond one is from the generation of samples, which is linearly related
to the number of components. As a comparison, if the grid search
is directly applied in ML estimation, the computational complexity is
exponentially related to KP .

5. CRLBS OF MULTICOMPONENT PPSS

In the case that the amplitudes and initial phases are unknown,
References [12, 13] give the CRLBs of multicomponent signals. Using
our notations, the KP ×KP Fisher information matrix is

F=
2
σ2

Re
[(

UH
(
IN×N−H

(
HHH

)−1
HH

)
U

)
¯(

QT⊗1K×K

)]
(28)

where the notations are as follows:

¯ Schur-Hadamard product
⊗ Kronecker product
IN×N N ×N identity matrix
1K×K K ×K matrix of ones
U =

[
U(1),U(2), . . . ,U(P )

]
N ×KP matrix
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U(p) =
[

∂h(p)

∂d(p,1) ,
∂h(p)

∂d(p,2) , . . . ,
∂h(p)

∂d(p,K)

]
N ×K matrix

Q = θθH P × P matrix
Besides, see Section 2 for the definitions of H, h, and θ. For clarity,
H (D) and h (D) in Section 2 are rewritten as H and h, respectively.

By using the Fisher information matrix, the CRLB is defined as
CRLBi =

[
F−1

]
ii

where [·]ii denotes getting the ith diagonal entry. The order of the cor-
responding PCs is {d(1,1), d(1,2), . . . , d(1,K), . . . , d(P,1), d(P,2), . . . , d(P,K)}.
Specifically, [3] proves that in the case of only two PPSs, if the ampli-
tudes of the two components are the same, the CRLBs of the corre-
sponding PCs are the same, i.e.,

CRLB
(
d(1,k)

)
= CRLB

(
d(2,k)

)
.

(c)

(a) (b)

Figure 1. (a) Scatter diagram of estimates over the plane of (d(1), d(2))
plane; (b) Scatter diagram of estimates over the plane of (d(1), d(3));
(c) Scatter diagram of estimates over the plane of (d(2), d(3)).
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6. EXPERIMENTS AND RESULTS

To illustrate the algorithm’s performance, two closely spaced quadratic
frequency modulated signals are used as components in our simulation.
Similar to [8, 9], in the following experiments, components are
equi-amplitude with A(1) = A(2) = 1. The initial phases are
φ

(1)
0 = 0 and φ

(2)
0 = π/4, respectively, and the PC sets are{

d(1,1), d(1,2), d(1,3)
}

= {0.12, 0.09, 0.06} and
{
d(2,1), d(2,2), d(2,3)

}
=

{0.14, 0.11, 0.08}, respectively. The sample length is 100. In
experiments, the parameters δ and R are set to be 0.001 and 5000,
respectively. Besides, as mentioned above, the choice of ρL and ρg

are problem specific. In our simulation, they are set to be 2 and 0.2,
respectively. Using the first component, the signal-to-noise ratio (SNR)
is defined as 10 lg

(
A(1)2

/
σ2

)
.

(c)

(a) (b)

Figure 2. (a) MSE and CRLB of the 1st order PC versus SNR;
(b) MSE and CRLB of the 2nd order PC versus SNR; (c) MSE and
CRLB of the 3rd order PC versus SNR.
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Experiment 1 simulates the estimation of PCs where the SNR is
chosen as 10 dB. In Figs. 1(a), (b) and (c), we scatter the projection
of estimates over the plane of

(
d(1), d(2)

)
, the one of

(
d(1), d(3)

)
, and

the one of
(
d(2), d(3)

)
, respectively. The estimates are shown by circles.

100 trials for each component are plotted. It can be shown that the
estimates are close to the true parameters in the case of closely spaced
signals.

To further evaluate the performance of this algorithm, Experiment
2 gives the Monte Carlo simulation results which are shown using mean
square error (MSE) from the average of 500 Monte Carlo simulations.
As a comparison, the CRLBs of the PCs are used. Figs. 2(a), (b)
and (c) show the estimation performance of the three coefficients,
respectively. Note that the lines of the CRLBs may be different from
those of other literatures since we adopt the normalized scale of PCs,
which is shown in Section 2. It can be observed that the CRLB is
attained when the SNR reaches 6 dB.

7. CONCLUSION

In this paper, we developed a ML parameter estimation algorithm of
multicomponent PPSs using importance sampling. The ML estimation
scheme was partitioned to two consecutive steps to separately estimate
the nonlinear parameter set including the PCs and the linear one
including the amplitudes and the initial phases. Then aiming at
the former estimation, we utilized importance sampling to alleviate
the effect of the so-called cross-term between components. In a ML
estimation sense, it is a non-iterative algorithm avoiding the choice of
the initial guess which is somewhat tricky. However, it should be noted
that with the increase of the number of polynomial orders, further
efficient algorithm will need to be investigated.
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