Vol. 21
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-05-27
A Fast DOA Estimation Algorithm for Uniform Circular Arrays in the Presence of Unknown Mutual Coupling
By
Progress In Electromagnetics Research C, Vol. 21, 257-271, 2011
Abstract
Based on the beamspace transform and the rank reduction theory (RARE), a fast direction of arrival (DOA) estimation algorithm in the presence of an unknown mutual coupling is proposed for uniform circular arrays (UCAs). Via relying on the circular symmetry and expand the mutual coupling into a limited number of phase modes, the azimuth estimates are able to be obtained without the exact knowledge of mutual coupling. Then, by using the special structure of mutual coupling matrix and the characteristic of mutual coupling coefficients, the elimination of spurious estimates and estimations of the mutual coupling coefficients are able to be handled simultaneously. The Propagator Method (PM) is used to avoid the eigenvalue decomposition and its corresponding RARE matrix allows decreasing the computation cost via using a well known identity for block matrices. Moreover, an implementation of rooting polynomial substitutes the one-dimension search. Therefore, the computation burden is greatly reduced. Numerical examples are presented to demonstrate the effectiveness of the proposed method.
Citation
Julan Xie, Zi-Shu He, and Hui-Yong Li, "A Fast DOA Estimation Algorithm for Uniform Circular Arrays in the Presence of Unknown Mutual Coupling," Progress In Electromagnetics Research C, Vol. 21, 257-271, 2011.
doi:10.2528/PIERC11042606
References

1. Mathews, C. P. and M. D. Zoltowski, "Eigenstructure techniques for 2-D angle estimation with uniform circular arrays," IEEE Trans. Signal Process., Vol. 42, No. 9, 2395-2407, 1994.
doi:10.1109/78.317861

2. Pesaventoand, M. and J. F. Böhme, "Direction of arrival estimation in uniform circular arrays composed of directional elements," Proc. Sensor Array and Multichannel Signal Processing Workshop, 503-507, Aug. 2002.
doi:10.1109/SAM.2002.1191091

3. Goossens, R., H. Rogier, and S. Werbrouck, "UCA Root-MUSIC with sparse uniform circular arrays," IEEE Trans. Signal Process., Vol. 56, 4095-4099, 2008.
doi:10.1109/TSP.2008.925905

4. Mati, W. and S. Jacob, "Direction finding of coherent signals via spatial smoothing for uniform circular arrays," IEEE Trans. Antennas Propag., Vol. 42, No. 5, 613-620, 1994.
doi:10.1109/8.299559

5. Jakobsson, A. and P. Stoica, "On the forward-backward spatial APES," Signal Processing, Vol. 86, 710-715, 2006.
doi:10.1016/j.sigpro.2005.06.002

6. Goossens, R. and H. Rogier, "A hybrid UCA-RARE/Root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling," IEEE Trans. Antennas Propag., Vol. 43, 841-849, 2007.
doi:10.1109/TAP.2007.891848

7. Buhong, W., H. Hontat, and L. Mookseng, "Decoupled 2D direction of arrival estination using compact uniform circular arrays in the presence of elevation-dependent mutual coupling," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 747-755, 2010.
doi:10.1109/TAP.2009.2039323

8. Zhang, T. T., Y. L. Lu, and H. T. Hui, "Compensation for the mutual coupling effect in uniform circular arrays for 2D DOA estimations employing the maximum likelihood technique ," IEEE Trans. Aerosp. Electron. Sys., Vol. 44, No. 3, 1215-1221, 2008.
doi:10.1109/TAES.2008.4655375

9. Qi, C., Y. Wang, Y. Zhang, et al. "DOA estimation and self-calibration algorithm for uniform circular array," Electronics Letters, Vol. 41, No. 20, 1092-1094, 2005.
doi:10.1049/el:20051577

10. Lin, M. and L. X. Yang, "Blind calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 315-318, 2006.
doi:10.1109/LAWP.2006.878898

11. Gao, D. Y., B. Wang, and Y. Guo, "Comments on `blind calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling' ," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 566-569, 2006.

12. Lin, M. and L. X. Yang, "Reply to the comments on `blind calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling'," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 568-569, 2006.
doi:10.1109/LAWP.2006.883954

13. Marcos, S., A. Marsal, and M. Benidir, "Propagator method for source bearing estimation," Signal Processing, Vol. 42, No. 2, 121-138, 1995.
doi:10.1016/0165-1684(94)00122-G

14. Marcos, S. and M. Benidir, "On a high resolution array processing method non-based on the eigenanlysis approach," 1990 International Conference on Acoustics, Speech, and Signal Processing, Vol. 5, 2955-2958, 1990.

15. Friedlander, B. and A. J. Weiss, "Direction finding in the presence of mutual coupling," IEEE Trans. Antennas Propag., Vol. 39, 273-284, 1991.
doi:10.1109/8.76322

16. Lükepohl, H., Handbook of Matrices, Wiley, Chichester, New York, 1996.