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Abstract—Based on the beamspace transform and the rank reduction
theory (RARE), a fast direction of arrival (DOA) estimation algorithm
in the presence of an unknown mutual coupling is proposed for uniform
circular arrays (UCAs). Via relying on the circular symmetry and
expanding the mutual coupling into a limited number of phase modes,
the azimuth estimates are able to be obtained without the exact
knowledge of mutual coupling. Then, by using the special structure
of mutual coupling matrix and the characteristic of mutual coupling
coefficients, the elimination of spurious estimates and estimations of
the mutual coupling coefficients are able to be handled simultaneously.
The Propagator Method (PM) is used to avoid the eigenvalue
decomposition. The RARE matrix of PM allows decreasing the
computation cost via using a well known identity for block matrices.
Moreover, an implementation of rooting polynomial substitutes the
one-dimension search. Therefore, the computation burden is greatly
reduced. Numerical examples are presented to demonstrate the
effectiveness of the proposed method.

1. INTRODUCTION

The direction of arrival (DOA) estimation of multiple narrowband
signals is a classic problem in array signal processing. The uniform
circular array (UCA) is able to provide 360◦ of coverage in the azimuth
plane and has uniform performance regardless of angle of arrival. Thus,
sometimes, UCA is more suitable than uniform linear array (ULA)
for applications such as radar, sonar, and wireless communications.
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Due to the circular symmetry, the beamspace transformation, based
on the phase-mode excitation principle, is usually applied to obtain
the desired Vandermode structure for the steering vector in the mode
space. This transformation results in the development of several DOA
estimation algorithms with low computational cost, such as UCA-RB-
MUSIC [1], UCA-ESPRIT [1], UCA-RARE [2] and Sparse UCA Root-
MUSIC [3], in the meanwhile dealing with coherent sources via spatial
smoothing technique [4, 5].

All the algorithms referred to above ignore the mutual coupling
effect, which ultimately destroys the underlying model assumptions
needed for their efficient implementations. In fact, most of the
algorithms are very sensitive to the array manifold errors due to
the mutual coupling fact. Therefore, it is necessary to take the
mutual coupling into account. There are several calibration algorithms
which have been proposed [6–10]. In [6] and [7], both the proposed
algorithms take the mutual coupling into account and employ the
UCA-RARE algorithm to estimate the azimuth angle first. With the
open-circuit voltages of the antenna elements expanded in spherical
mode, a Root-MUSIC algorithm is able to be performed in the
elevation space to obtain the elevation estimates in [6]. In [7], a
1D parameter search replaces the implementation of Root-MUSIC
algorithm in the elevation space. In the 1D parameter search for
elevation estimates, the elevation-dependent mutual coupling effect can
be efficiently compensated by the elevation-dependent receiving mutual
impedances. In [8], using the maximum likelihood technique optimized
by the emperor selective genetic algorithm for UCAs, authors perform
the 2D DOA estimation in the presence of mutual coupling. These
algorithms are based on the knowledge of mutual coupling. While
in [9] and [10], 1D DOA estimation algorithms in the presence of
unknown mutual coupling are proposed. Both the algorithms in [9]
and [10] estimate the DOAs using a one-dimension search and yield
spurious estimates due to the ambiguity of the array manifold in the
presence of the mutual coupling. In [11] and [12], the supplements for
the ambiguity of the array manifold are presented and the solutions
are proposed.

In this paper, we will assume that the noncoherent narrowband
sources are located at the same elevation angle. We consider 1-D
(azimuth) angular estimation in the unknown mutual coupling. Using
a new formulation of the beamspace array manifold in the presence
of mutual coupling, the rank reduction theory (RARE) based on the
Propagator Method (PM) [13, 14] can be used to estimate the azimuth
angle without the knowledge of mutual coupling. We find that the
solution to eliminate the spurious estimates proposed in [11] and [12]
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failed sometimes. This will be illuminated by an example. Based on
the special structure of mutual coupling matrix and the characteristic
of mutual coupling coefficients, an appropriate solution to eliminate the
spurious estimates is presented. Compared with the DOA estimation
algorithms mentioned in [9] and [10], our proposed algorithm estimate
the azimuth angle by rooting a polynomial instead of a one-dimension
search. In addition, the Propagator Method avoids the eigenvalue
decomposition and its corresponding process to reduce the dimension
of the RARE matrix is introduced. Therefore, the computation burden
is greatly reduced.

2. PROBLEM FORMULATION

Consider a UCA consisting of N identical elements uniformly
distributed over the circumference of a circle of radius r. Assume that
D narrowband sources, centered on wavelength λ, impinge on the array
from directions φi (i = 1, . . . , D), respectively, where φi ∈ [0, 2π) is the
azimuth angle measured from the X-axis counter-clockwise. The N×1
vector received by the array in the presence of mutual coupling [15] is
expressed by

x(t) = CA(φ)s(t) + n(t) (1)

where A(φ) = [a(φ1) . . . a(φD)] is the N × D matrix of the
steering vectors, s(t) = [ s1(t) . . . sD(t) ]T is the D×1 signal vector,
n(t) = [ n1(t) . . . nN (t) ]T is the N × 1 noise vector. The signal
vector s(t) and the vector n(t) of the additive and spatially white noise
are assumed to be statistically independent and zero-mean. The N×N
matrix C is the mutual coupling matrix (MCM). Due to the circular
symmetry, a model for the MCM of UCAs [15] can be a complex
symmetric circulant matrix. The steering vector with mutual coupling
can be modeled as

ã(φ) = Ca(φ) (2)

The covariance matrix R of the received data is constructed and an
eigendecomposition of R results in a signal and noise subspace

R = E
{
x (t)xH (t)

}
= EsΛsEH

s + EnΛnEH
n (3)

where Es and En denote the signal and noise subspace eigenvectors and
the diagonal matrices Λs and Λn contain the signal subspace and noise
subspace eigenvalues. The MUSIC algorithm estimates the DOAs from
the D deepest nulls of the MUSIC function

fMUSIC (φ) = ãH (φ)EnEH
n ã (φ) (4)

This method needs to know the mutual coupling coefficients.
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Using the Lemma 2 in [15], Equation (2) can be re-expressed as

ã(φ) = Γ(φ)c (5)

where c = [ c1 c2 . . . cK ]T and the N ×K matrix Γ(φ) is the sum
of the four following matrices

Γ(φ) = Γ1(φ) + Γ2(φ) + Γ3(φ) + Γ4(φ) (6)

with

[Γ1(φ)]p,q =
{

[a (φ)]p+q−1 , p + q ≤ N + 1
0, otherwise

[Γ2(φ)]p,q =
{

[a (φ)]p−q+1 , p ≥ q ≥ 2
0, otherwise

[Γ3(φ)]p,q =
{

[a (φ)]N+p−q+1 , p < q ≤ Ks

0, otherwise

[Γ4(φ)]p,q =
{

[a (φ)]p+q−N−1 , p + q ≥ N + 2, 2 ≤ q ≤ Ks

0, otherwise

(7)

where K = (N + 2)/2 for N is even and K = (N + 1)/2 for N is odd.
Ks = N/2 for N is even and Ks = (N + 1)/2 for N is odd. cn = [C]1,n,
where [•]i,j denotes the component of ith row and jth column of the
matrix. The mutual coupling coefficients are approximated to zeros
when the elements are far from each other. If the number of nonzero
mutual coupling coefficients is L, Equation (5) is given by

ã(φ) = ΓL(φ)cL (8)

where ΓL(φ) represents the first L columns and cL denotes the first L
elements. Therefore, Equation (4) can be re-expressed as

fMUSIC (φ) = cH
L ΓH

L (φ)EnEH
n ΓL(φ)cL (9)

When N − D ≥ L, two well-known one-dimension search
algorithms [9, 10] estimate the DOAs in the unknown mutual coupling
by constructing an analogous MUSIC function:

f (φ) = wH
o P−1 (φ)wo

cL (φ) =
P−1 (φ)wo

wH
o P−1 (φ)wo

(10)

or

f(φ) =
1

det{P(φ)} or
1

λmin{P(φ)}
cL = vmin{P(φ)} and c1 = 1

(11)
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where P(φ) = ΓH
L (φ)EnEH

n ΓL(φ) and wo = [ 1, 0, . . . 0 ]T . det{•}
is the determinant of a matrix. λmin{•} is the smallest eigenvalue of
a matrix and vmin{•} is the corresponding eigenvector. Note that the
Equation (10) is based on the following minimization problem

(φ, cL) = arg min
(φ,c)

cH
L P(φ)cL, s.t. cH

L wo = 1 (12)

The implementation of one-dimension search results in higher
computational load.

3. BEAMSPACE TRANSFORM IN THE PRESENCE OF
MUTUAL COUPLING

Here, the beamspace transformation will be introduced. The
beamspace steering vector in the presence of mutual coupling is given.
These form the theoretical basis of our algorithm.

The nth (n = 1, . . . N) component of the array steering vector
a(φ) is

[a(φ)]n = ejkr cos(φ−γn) =
∞∑

m=−∞
jmJm (kr) ejm(φ−γn) (13)

where γn = 2π(n− 1)/N . Since Jm (kr) decays exponentially, we
can assume that, for m À kr the higher order Bessel functions
are negligible. Therefore, the steering vector can be truncated by
considering a finite number of modes. We assume that the truncated
order is M . A rule of thumb for determining M is M = dkre, with
d•e the ceiling operation. Exciting the array with the weight vector
wk = 1

/
N [ e−jkγ1 . . . e−jkγN ]H results in

wH
k a(φ) = jkJk(kr)ejkφ +

∞∑

q=1

[
jk+qNJk+qN (kr)ej(k+qN)φ

+jk−qNJk−qN (kr)ej(k−qN)φ
]

(14)

The first term in (14) becomes dominant if N ≥ 2M + 1. Then the
beamspace steering vector is

ab(θ, φ) = WHa(φ) = T(φ)g (15)
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where W =
√

N [ w−M . . . w0 . . . wM ] and

z = ejφ

T(φ) =

[ Q(z) 0M×1

01×M 1
ΠQ(1/z) 0M×1

]
∈ C(2M+1)×(M+1)

Q(z) = diag(z−M z−M+1 . . . z−2 z−1)

[g]m = jM+1−mJM+1−m(kr), m = 1, 2, . . . M + 1

(16)

Π is the M ×M anti-diagonal matrix.
It should notice that [4] :

C =
K∑

n=1

cnVn +
N∑

n=K+1

cN+2−nVn (17)

V1 = I and Vn(n > 1) is the (n−1)th power of the cyclic permutation
operator given by

H =
[

0(N−1)×1 I(N−1)×(N−1)

1 01×(N−1)

]
(18)

Rewrite Equation (2) as

ã(φ) =
K∑

n=1

cnVna(φ) +
N∑

K+1

cN+2−nVna(φ) (19)

Using Vna(φ) = a(φ− 2π(n− 1)/N) and Equation (15), yields

WHVna(φ) = MnT (φ)g (20)

where Mn = diag
{
ej2πM(n−1)/N . . . 1 . . . e−j2πM(n−1)/N

}
. Hence, the

beamspace steering vector in the presence of mutual coupling can be
expressed as

ãb (φ) = WH ã (φ) = MsT (φ)g (21)

where Ms =
∑K

n=1 cnMn +
∑N

n=K+1 cN+1−nMn. Because of the
symmetry of the mutual coupling coefficients and the periodicity of
ej2πM(n−1)/N , it is easy to find that the diagonal elements of Ms is
centro-symmetry. Hence, Equation (21) can be modeled as

ãb(θ, φ) = T(φ)(m¯ g(θ)) = Tφ)g̃(θ) (22)

where g̃(θ) = m¯g(θ) and m is the first M+1 elements of the diagonal
elements of Ms. “¯” denotes the Hadamard product of vectors.
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4. NEW BLIND CALIBRATION METHOD AND DOA
ESTIMATION

In this section, we will present a new DOA estimation algorithm in
the presence of unknown mutual coupling. The algorithm includes two
parts: DOA estimation and the elimination of the spurious estimates.

4.1. The Azimuth Angle Estimation

Recalling Equation (1), the corresponding beamspace array signal
model is

xb(t) = WHx(t) (23)

The covariance matrix Rb of the beamspace data is given by

Rb = E
{
xb (t)xH

b (t)
}

= WHRW (24)

Rb can be partitioned as follows

Rb = [B1 | B2 ] (25)

where B1 and B2 are (2M + 1) × D and (2M + 1) × (2M + 1−D)
dimension matrices, respectively. For Propagator Method [13, 14],
there is a linear operator Pr given by

Pr =
(
BH

1 B1

)−1
BH

1 B2 (26)

Construct a matrix Ep as follows

Ep =
[

Pr

−I(2M+1−D)

]
(27)

According to the principle of Propagator Method, the following
equation holds true

ãH
b (θ, φ)Ep = 0 (28)

Observe the Equation (26), it only requires the inversion of an
D×D dimension matrix. Compared with the computation complexity
O((2M + 1)3) for eigenvalue decomposition, its computation complex-
ity is O(D3).

Obviously, combining Equations (22) and (28), an analogous
MUSIC spectrum function can be expressed as

fPA (φ) = g̃HTH (φ)EpEH
p T (φ) g̃ (29)

When M ≥ D, this structure allows using a rank reduction algorithm,
namely UCA-RARE [2]. Therefore, we can root the sample polynomial

P1 (z)
∣∣|z|=1 = det

{
TT (1/z)EpEH

p T (z)
}

(30)
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and then find the signal azimuth angle from roots of (30), which are
located closest to the unit circle.

The matrix U = TT (1/z)EpEH
p T (z) can be partitioned into four

parts with

U =
[

U1 U2

U3 U4

]
(31)

where U1, U2, U3 and U4 are D×D , D×(M + 1−D), (M + 1−D)×
D and (M + 1−D)× (M + 1−D) matrices, respectively. Due to the
particularity of Ep, the following equation always holds true:

U4 =




2 0 . . . 0 0 0
0 2 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . 2 0 0
0 0 . . . 0 2 0
0 0 . . . 0 0 1




(32)

Making use of a well known identity for block matrices [16]

det
{[

A B
C D

]}
= det {D}det

{
A−BD−1C

}
(33)

which holds true for arbitrary matrices A, B, C and nonsingular
matrix D. Equation (31) can be given by

P1 (z)
∣∣|z|=1 = det {U}

= det {U4}det
{
U1 −U2U−1

4 U3

}

= 2M−D det
{
U1 −U2U−1

4 U3

}
(34)

Therefore, the roots for P1 (z) are equivalent to these of

P2 (z)
∣∣|z|=1 = det

{
U1 −U2U−1

4 U3

}
(35)

Notice that the matrix to compute the determinant in Equation (35)
is D × D dimension while in Equation (30) it is (M + 1) × (M + 1)
dimension. Thus, we prefer using Equation (35) to Equation (30) in
order to further reduce the computation cost. Similar to the Root-
MUSIC roots, RARE roots enjoy the so called conjugate reciprocity
property. That is, if z0 is a root of P2(z), then z̃0 = 1/z∗0 is also a root
of P2(z). Therefore, besides the spurious estimates (φi+φj)/2 [2], there
are spurious estimates φi+π for φi < π, φi−π for φi > π, (φi+φj)/2+π
for (φi + φj)/2 < π and (φi + φj)/2− π for (φi + φj)/2 > π.
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4.2. The Solution to Eliminate the Spurious Estimate

Here, we only consider the DOA estimation for compact UCA, in
which the distance between neighborhood elements is smaller than
half-wavelength. Therefore, both algorithms presented in Section 2
also have spurious estimates. In [11], authors suggest adding a
rank constraint and judge whether the estimated mutual coupling
coefficients abiding the rule:

|c1| > |c2| > |c3| > . . . > |cL| (36)

They consider the DOAs whose corresponding estimated mutual
coupling coefficients do not satisfy the Equation (36) as spurious DOAs.
However, this method can not be guaranteed to cover all spurious
estimates. In [12], authors advise to select the estimates with D
biggest values of f(φ) = wH

o P−1(φ)wo as true estimates or choose
the estimates with same estimate mutual coupling coefficients as the
real estimates. Whereas, sometimes f(φ) for the spurious estimates
may be larger than it for real estimates. In this paper, we will present
another method to eliminate the spurious estimates.

Just as described in Equation (10), for each estimated φ, we can
compute the estimated mutual coupling coefficients as

cL (φ) =
F−1 (φ)wo

wH
o F−1 (φ)wo

(37)

This equation is the optimal solution to the following constraint
quadratic minimization problem

(φ, cL) = arg min
(φ,c)

cH
L F(φ)cL, s.t.cH

L wo = 1 (38)

where F(φ) = ΓH
L (φ)GpGH

p ΓL(φ) and Gp = [PT | −I (N−D)]
T , P =

(DH
1 D1)−1DH

1 D2. The N×D dimension matrix D1 and N× (N −D)
dimension matrix D2 partition the matrix R as R = [D1 | D2 ].

There are four classes of estimated results for our proposed
algorithm. We label them as Φ1 = ( ψ1 . . . ψD ), Φ2 =
( α1 . . . αDs ), Φ3 = ( ϕ1 . . . ϕD ) and Φ4 = ( β1 . . . βDs ),
where Ds = D(D − 1)/2. Φ1 is the gather of the real DOAs
ψi (i = 1, 2, . . . , D) and αt = (ψi + ψj)/2(t = 1, 2, . . . , Ds), ϕi = ψi +π
for ψi < π or ϕi = ψi − π for ψi > π (i = 1, 2, . . . , D), βt = αt + π
for αt < π or βt = αt − π for αt > π(t = 1, 2, . . . , Ds). A lot of
simulations have led to a rule of thumb that the estimated mutual
coupling coefficients corresponding to Φ3 and Φ4 do not comply with
the rule in Equation (36). Therefore, we can using this rule to
remove the spurious estimates Φ3 and Φ4. In fact, we only need
to compute the absolute values of the last two elements of each
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cL(φ) and compare them with each other and 1. Then, the spurious
estimates can be fixed on. Thereafter, we compare the rest estimated
mutual coupling coefficients corresponding to Φ1 and Φ2 and select
the estimates with nearly same cL(φ) as the true estimates. Compared
with the second method proposed in [12], which compares all estimated
mutual coupling coefficients to find the nearly same mutual coupling
coefficients cL(φ), our method reduce the computation time.

The steps involved in the proposed algorithm can be summarized
below:

1) Compute the sample covariance matrix R̂ = (1/Q)
Q∑

q=1
x(q)xH(q)

by averaging over Q data snapshots. Compute the beamspace
covariance matrix R̂b = WHR̂W.

2) Construct matrices Êp from R̂b and Ĝp from R̂, respectively.
3) Obtain the azimuth angle estimates with Equation (35).
4) Eliminate the spurious estimates.

Although we construct two matrices Ep and Gp which span
the noise space in beamspace and element-space, respectively,
their computation complexity is O(D3) and it is smaller than
the computation complexity O(N3) for eigenvalue decomposition in
element-space. Moreover, the matrix P(φ), used in [9] to compute
the inverse matrix and in [10] to calculate the determinant or to
perform the eigenvalue decomposition, is N × N dimension, while
the matrix to calculate the determinant in our proposed algorithm is
D×D dimension. Therefore, the computation cost is greatly reduced.
Finally, we use rooting a polynomial instead of the implementation
of one-dimension search. Thus, the computation burden is further
decreased.

5. SIMULATIONS

In this example, we will show how our proposed algorithm
works. A UCA of radius r = 0.5λ with N = 11 is em-
ployed. The signals and noise in our simulations are assumed to
be stationary, zero mean, and uncorrelated Gaussian random pro-
cesses. Noise is both spatially and temporally white. The mu-
tual coupling vector is c = [1, 0.6237 + j0.3875, 0.3658 + j0.2316,

0.1643 + j0.1089, 0.0978 + j0.0147, 0.0135− j0.0087]T . The trun-
cated order is M = dkre = 4. Two signals arrive at the array from
directions φ1 = 80◦ and φ2 = 150◦, respectively. The SNR = 20 dB
is quoted per source per array element. Fig. 1(a) shows the spatial
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(a) (b)

Figure 1. (a) The special spectrum. (b) The roots of our proposed
algorithm.

spectra for the algorithms presented in Section 2. Here we label the
algorithm using Equation (10) as method 1 and the one using Equa-
tion (11) as method 2. There are six peak values located at azimuth
φ = ( 80◦ 115◦ 150◦ 260◦ 295◦ 330◦ ). Apparently, the peak
value in spurious estimate φ = (80◦ + 150◦)/2 = 115◦ is larger than
it for the real estimate φ = 80◦. Therefore, we may eliminate the
real DOA φ = 80◦ if we select the estimates with D biggest values of
f(φ) = wH

o P−1(φ)wo as true estimates. Fig. 1(b) presents the roots
obtained by our proposed algorithm. Table 1 is the mean value of esti-
mated mutual coupling coefficients ĉ for 300 independent experiments.
It is clear that the estimated mutual coupling coefficients corresponding
to φ = ( 260◦ 295◦ 330◦ ) do not satisfy the rule in Equation (36).
Although the estimated mutual coupling coefficients corresponding to
spurious estimate φ = 115◦ comply with the rule in Equation (36), it is
quite different from the estimated mutual coupling coefficients corre-
sponding to φ = 80◦ and φ = 150◦. However, the discrepancy between
the estimated mutual coupling coefficients corresponding to φ = 80◦
and φ = 150◦ is quite small. Thus, we consider these two DOAs as
real DOAs.

The second example shows the performance of the algorithms
for different SNR levels. A UCA of radius r = 0.7λ
with N = 13 is employed. The mutual coupling vector is
c = [1, 0.6278− j0.3974, 0.4943 + j0.2659, 0.4039 + j0.1563, 0.3045−
j0.0963, 0.1278 + j0.1470, 0.0889 + j0.0412]T and truncated order is
M = 5. Two signals arrive at the array from directions φ1 = 20◦
and φ2 = 100◦, respectively. The SNR level is varied from 0 dB to
40 dB and is quoted per source per array element. The results are
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based on 300 independent experiments. Note that the solution to
eliminate the spurious estimates for the method 1 and the method 2
employs the one proposed in our paper. The root-mean-square-error
(RMSE) plots of estimate DOAs for different algorithms and Cramer-
Rao bound (CRB) are shown in Fig. 2. Apparently, the estimated
RMSEs for all algorithms followed the trend of the CRB. It shows
that all algorithms can achieve high resolution without knowing the
mutual coupling. The angle search step for the two search methods
is 0.1◦. The performances for the two search methods are nearly
the same for all SNR levels. However, they are a little inferior to
the performance for the proposed algorithm when the SNR level is
smaller than 30 dB. In fact, the estimated RMSEs for all algorithms
are quite close to each other. Note that compared with other two search
algorithms, the proposed algorithm achieves comparable performance
with low computation cost (see the discussion of the computation cost
in Section 4).

In the last example, we demonstrate the performance of the
proposed algorithm with angle resolution. A UCA of radius r = λ with
N = 19 is considered. The mutual coupling vector is c = [1, 0.7286 +
j0.5473, 0.6435+ j0.4877, 0.4768+ j0.4126, 0.3687+ j0.2385, 0.2513−
j0.2086, 0.1475+ j0.1389, 0.1013+ j0.0872, 0.0946+ j0.0151, 0.0045+
j0.0086]T and truncated order is M = 7. The SNR = 20dB is quoted
per source per array element. Two signals arrive at the array from
directions φ1 = 200◦ and φ2 = 200◦ + δ, respectively. The azimuth
angle of the second source is varied as δincreases from 4◦ to 50◦ in
steps of 2◦. For each angle separation, all algorithms are applied to

Figure 2. The RMSEs and CRB for different algorithms versus SNR
level.
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Figure 3. The RMSEs and CRB for different algorithms versus the
separation angle δ.

Table 1. The mean value of the estimated mutual coupling coefficients
for all estimated azimuth angle.

80◦ 230◦ 115◦ 195◦ 150◦ 330◦

c1
0.6250

+j0.3960

−0.8396

−j0.9093

0.8589

−j0.4127

−0.4842

+j1.6940

0.6283

+j0.3832

−0.6207

−j0.8431

c2
0.3619

+j0.2314

2.6127

−j1.3242

0.6493

−j0.0468

0.7570

+j1.9350

0.3654

+j0.2327

2.7121

−j0.8524

c3
0.1671

+j0.1109

2.8398

−j3.2022

0.3759

−j0.0363

−1.2447

+j5.7813

0.1669

+j0.1074

3.2576

−j2.3763

c4
0.0950

+j0.0156

8.9051

−j4.4197

0.1453

−j0.0132

2.6807

+j7.8118

0.0967

+j0.0159

9.1629

−j2.5410

c5
0.0145

−j0.0095

7.2758

−j12.0571

0.0736

−j0.0400

0.8151

+j10.1235

0.0142

−j0.0084

9.0846

−j9.9107

obtain the DOA estimates of the two impinging signals. The results
are computed from 300 independent trials. The estimated RMSEs and
CRB for different algorithms are shown in Fig. 3. For all algorithms,
the estimated RMSEs decrease as the separation angle δ increases.
The performances for the two search methods are nearly the same
whatever value the separation angle δ is. However, they are inferior to
the performance for the proposed algorithm when the separation angle
δ is larger than 28◦. Actually, the performances of all algorithms are
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quite close to each other when the separation angle δ is larger than 8◦.
As we know, there is the spurious estimate (φ1+φ2)/2, which is quite
close to the real DOAs φ1 and φ2 when the separation angle is small.
Thus, all algorithms work worse then.

6. CONCLUSION

In this paper, we propose a fast DOA estimation algorithm for
UCAs in the unknown mutual coupling. Based on the beamspace
transformation and RARE, the azimuth estimates can be obtained
without the knowledge of the mutual coupling. The PM is applied
here to avoid the eigenvalue decomposition. A post-process of PM is
introduced to reduce the dimension of the matrix used to calculate the
determinant in RARE. Furthermore, we use the polynomial rooting
instead of the implementation of one-dimension search. Thus, the
computation burden is greatly reduced. Using the special structure
of mutual coupling matrix and the characteristic of mutual coupling
coefficients, an amended solution to eliminate the spurious estimates is
presented. Simulation results demonstrate that the method is correct
and effective.
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