Vol. 21
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-05-08
A High-Gain CMOS LNA for 2.4/5.2-GHz WLAN Applications
By
Progress In Electromagnetics Research C, Vol. 21, 155-167, 2011
Abstract
This paper describes a high-gain CMOS low-noise amplifier (LNA) for 2.4/5.2-GHz WLAN applications. The cascode LNA uses an inductor at the common-gate transistor to increase its transconductance equivalently, and therefore it enhances the gain effectively with no additional power consumption. The LNA is matched concurrently at the two frequency bands, and the input/output matching networks are designed with two notch frequencies to shape the frequency response. The dual-band LNA with the common-gate inductor is designed, implemented, and verified in a standard 0.18-μm CMOS process. The fabricated LNA which consumes 7.2 mW features gains of 14.2 dB and 14.6 dB, and noise figures of 4.4 dB and 3.7 dB at the 2.4-GHz and 5.2-GHz frequency bands, respectively. The proposed LNA demonstrates a 4.9-7.8 dB gain enhancement compared to conventional cascode LNAs, and the chip size is 1.06 mm × 0.79 mm including all testing pads.
Citation
Sen Wang, and Bo-Zong Huang, "A High-Gain CMOS LNA for 2.4/5.2-GHz WLAN Applications," Progress In Electromagnetics Research C, Vol. 21, 155-167, 2011.
doi:10.2528/PIERC11032705
References

1. Kargaran, E. and B. Madadi, "Design of a novel dual-band concurrent CMOS LNA with current reuse topology," Int. Conf. on Networking and Information Technology, 386-388, Jun. 2010.

2. Hsiao, C.-L. and Y.-L. Huang, "A low supply voltage dualband low noise amplifier design," 13th IEEE Int. Symp. on Consumer Electronics, 339-341, May 2009.
doi:10.1109/ISCE.2009.5156920

3. Datta, S., K. Datta, A. Dutta, and T. K. Bhattacharyya, "Fully concurrent dual-band LNA operating in 900 MHz/2.4 GHz bands for multi-standard wireless receiver with sub-2 dB noise figure," 3rd Int. Conf. on Emerging Trends in Engineering and Technology, 731-734, Nov. 2010.

4. Dutta, A., K. Dasgupta, and T. K. Bhattacharyya, "Parasitica-ware robust concurrent dual-band matching network for a packaged LNA," IET Microw. Antennas & Propag., Vol. 3, No. 7, 1094-1101, Jul. 2009.
doi:10.1049/iet-map.2008.0244

5. Tham, J., M. Margrait, B. Pregardier, C. Hull, R. Magoon, and F. Carr, "A 2.7V 900-MHz dual-band transceiver IC for digital wireless communication," IEEE J. Solid-State Circuits, Vol. 34, No. 3, 286-291, Mar. 1999.
doi:10.1109/4.748179

6. Wu, S. and B. Razavi, "A 900-MHz/1.8-GHz CMOS receiver for dual-band applications," IEEE J. Solid-State Circuits, Vol. 33, No. 12, 2178-2185, Dec. 1998.
doi:10.1109/4.735702

7. Ryynanen, J., K. Kivekas, J. Jussila, and K. Halonen, "A dual-band RF front-end for WCDMA and GSM applications," IEEE J. Solid-State Circuits, Vol. 36, No. 3, 1198-1204, Mar. 2001.
doi:10.1109/4.938370

8. Li, Z., R. Quintal, and K. K. O, "A dual-band CMOS front-end with two gain modes for wireless LAN applications," IEEE J. Solid-State Circuits, Vol. 39, No. 11, 2069-2073, Nov. 2004.

9. Lu, L. H., H.-H. Hsieh, and Y.-S. Wang, "A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier," IEEE Microw. and Wireless Compon. Lett., Vol. 15, No. 10, 685-687, Oct. 2005.

10. Vidojkovic, V., J. van der Tang, E. Hanssen, A. Leeuwenburgh, and A. van Roermund, "Fully-integrated DECT/Bluetooth multiband LNA in 0.18 μm CMOS," Proc. IEEE Int. Symp. Circuits Systems, Vol. 1, I-565-I-568, 2004.

11. Li, Z., R. Quintal, and K. K. O, "A dual-band CMOS front-end with two gain modes for wireless LAN applications," IEEE J. Solid-State Circuits, Vol. 39, No. 11, 2069-2073, Nov. 2004.

12. Zhao, G., F.-S. Zhang, Y. Song, Z.-B. Weng, and Y.-C. Jiao, "Compact ring monopole antenna with double meander lines for 2.4/5 GHz dual-band operation," Progress In Electromagnetics Research, Vol. 72, 187-194, 2007.
doi:10.2528/PIER07031405

13. Ren, W., "Compact dual-band slot antenna for 2.4/5 GHz WLAN applications," Progress In Electromagnetics Research B, Vol. 8, 319-327, 2008.
doi:10.2528/PIERB08071406

14. Wu, G.-L., W. Mu, X.-W. Dai, and Y.-C. Jiao, "Design of novel dual-band bandpass filter with microstrip meander-loop resonator and CSRR DGS," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
doi:10.2528/PIER07090301

15. Pan, S. J., L. W. Li, and W. Y. Yin, "Performance trends of on-chip spiral inductors for RFICs," Progress In Electromagnetics Research, Vol. 45, 123-151, 2004.
doi:10.2528/PIER03062303

16. Jhon, H.-S., I. Song, J. Jeon, H. Jung, M. Koo, B.-G. Park, J. D. Lee, and H. Shin, "8mW 17/24 GHz dual-band CMOS low-noise amplifier for ISM-band application," Electronics Letters, Vol. 44, No. 23, 1353-1354, Nov. 2008.
doi:10.1049/el:20081963

17. Hashemi, H. and A. Hajimiri, "Concurrent multiband low-noise amplifiers --- Theory, design, and applications," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 1, 288-301, Jan. 2002.
doi:10.1109/22.981282

18. Wong, S.-K., F. Kung, S. Maisurah, M. N. B. Osman, and S. J. Hui, "Design of 3 to 5 GHz CMOS low noise amplifier for ultra-wideband (UWB) system," Progress In Electromagnetics Research C, Vol. 9, 25-34, 2009.
doi:10.2528/PIERC09062202

19. Dorafshan, A. and M. Soleimani, "High-gain CMOS low noise amplifier for ultra wide-band wireless receiver," Progress In Electromagnetics Research C, Vol. 7, 183-191, 2009.
doi:10.2528/PIERC08090903

20. Hsieh, H.-H. and L.-H. Lu, "A 40 GHz low-noise amplifier with a positive-feedback network in 0.18-μm CMOS," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 8, 1895-1902, Aug. 2009.
doi:10.1109/TMTT.2009.2025418

21. Cassan, D. J. and J. R. Long, "A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS," IEEE J. Solid-State Circuits, Vol. 38, No. 3, 427-435, Mar. 2003.
doi:10.1109/JSSC.2002.808284

22. Lee, T. H., The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge Univ. Press, Cambridge, UK, 1998.

23. Nguyen, T.-K., C.-H. Kim, G.-J. Ihm, M.-S. Yang, and S.-G. Lee, "CMOS low-noise amplifier design optimization techniques," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 1433-1442, May 2004.
doi:10.1109/TMTT.2004.827014

24. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using a negative gm cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 619-630, 2010.
doi:10.1163/156939310791036412

25. Zhang, J., J.-Z. Gu, B. Cui, and X.-W. Sun, "Compact and harmonic suppression open-loop resonator bandpass filter with harmonic suppression tri-section SIR," Progress In Electromagnetics Research, Vol. 69, 93-100, 2007.
doi:10.2528/PIER06120702

26. Linten, D., L. Aspemyr, W. Jeamsaksiri, J. Ramos, A. Mercha, S. Jenei, S. Thijs, R. Garcia, H. Jacobsson, P. Wambacq, S. Donnay, and S. Decouter, "Low-power 5 GHz LNA and VCO in 90nm RF CMOS," IEEE Symp. VLSI Circuits Dig. Tech. Papers, 372-375, Jun. 2004.