Vol. 20
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-03-17
Design and Analysis of High-Voltage High-Efficiency Ultra-Wideband Pulse Synthesizer
By
Progress In Electromagnetics Research C, Vol. 20, 187-201, 2011
Abstract
A novel ultra-wideband (UWB) pulse synthesizer is proposed, which uses a distributed amplifier to combine Gaussian pulses of different polarities, amplitudes and delays. The center frequency and bandwidth of the synthesized pulse can be adjusted by varying the number of the Gaussian pulses and the delays between them. Compared to other UWB pulse generators, the present synthesizer is capable of higher voltages and higher efficiencies. Using 0.25-μm pHEMTs, a prototype synthesizer has been designed and fabricated with a center frequency of 4.0 GHz and a bandwidth of 1.9 GHz. Under a Gaussian input pulse of 1.5 V and 100 ps, the synthesizer outputs into 50 Ω a pulse of 4.5 V and 1 ns. At a pulse-repetition frequency of 10 MHz, the synthesizer consumes 1 mA at 3 V with 17% efficiency. Approaches to maintain high efficiency by scaling the supply voltage for different input amplitudes and pulse-repetition frequencies have also been verified experimentally.
Citation
Chao Fang, Choi Look Law, James C. M. Hwang, and Jingjing Xia, "Design and Analysis of High-Voltage High-Efficiency Ultra-Wideband Pulse Synthesizer," Progress In Electromagnetics Research C, Vol. 20, 187-201, 2011.
doi:10.2528/PIERC11020509
References

1. Win, M. Z. and R. A. Scholtz, "Impulse radio: How it works," IEEE Commun. Lett., Vol. 2, No. 2, 36-38, Feb. 1998.
doi:10.1109/4234.660796

2. Fontana, R. J., E. Richley, and J. Barney, "Commercialization of an ultra wideband precision asset location system," Proc. IEEE Int. Conf. Ultra-wideband Systems Technologies, 369-373, Nov. 2003.

3. Federal Communications Commission, , Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems: First report and order, Washington DC, ET-docket 98-153, FCC 02-48, 1-118, Feb. 14, 2002.

4. Wentzloff, D. D. and A. P. Chandrakasan, "A 3.1-10.6 GHz ultra-wideband pulse shaping mixer," Proc. IEEE Radio Frequency Integrated Circuits Symp. Dig., 83-86, Jun. 2005.

5. Li, K., "Experimental study on UWB pulse generation using UWB band pass filters ," Proc. IEEE Int. Conf. Ultra-wideband Systems Technologies , 103-108, Sep. 2006.
doi:10.1109/ICU.2006.281523

6. Baranauskas, D. and D. Zelenin, "A 0.36W 6b up to 20GS/s DAC for UWB wave formation," Proc. IEEE Int. Solid-state Circuits Conf., 2380-2389, Feb. 2006.

7. Kim, H., D. Park, and Y. Joo, "All-digital low power CMOS pulse generator for UWB system," IEE Electronics Lett., Vol. 40, No. 24, 1534-1535, Nov. 2004.
doi:10.1049/el:20046923

8. Smaini, L., et al. "Single-chip CMOS pulse generator for UWB systems," IEEE J. Solid-state Circuits, Vol. 41, No. 7, 1551-1561, Jul. 2006.
doi:10.1109/JSSC.2006.873896

9. Diao, S. and Y. Zheng, "An ultra low power and high efficiency UWB transmitter for WPAN applications," Proc. Europe Solid-state Circuit Conf., 386-389, Sep. 2008.

10. Fang, C., C. L. Law, and J. C. M. Hwang, "High-voltage high-efficiency ultrawideband pulse synthesizer," IEEE Microw. Wireless Compon. Lett., Vol. 20, 49-51, Jan. 2010.

11. Low, Z. N., J. H. Cheong, and C. L. Law, "Novel low cost higher order derivative Gaussian pulse generator circuit," Proc. Int. Conf. Communications Systems, 30-34, Sep. 2004.

12. Strid, E. W. and K. R. Gleeson, "A DC-12 GHz monolithic GaAs FET distributed amplifier," IEEE Trans. Microw. Theory Tech., Vol. 30, No. 7, 969-975, Jul. 1982.

13. TriQuint Semiconductors, Inc., Hillsboro, Oregon, USA.

14. Kimball, D., P. Draxler, J. Jeong, C. Hsia, S. Lanfranco, W. Nagy, K. Linthicum, L. Larson, and P. Asbeck, "50% PAE WCDMA basestation amplifier implemented with GaN HFETs," IEEE Compound Semiconductor Integrated Circuit Symp. Dig., 89-92, Oct. 2005.