DESIGN AND ANALYSIS OF HIGH-VOLTAGE HIGH-EFFICIENCY ULTRA-WIDEBAND PULSE SYNTHE-SIZER

C. Fang and C. L. Law

PWTC Center Nanyang Technological University Singapore 639815, Singapore

J. C. M. Hwang

Lehigh University Bethlehem, PA 18015, USA

J. Xia

PWTC Center Nanyang Technological University Singapore 639815, Singapore

Abstract—A novel ultra-wideband (UWB) pulse synthesizer is proposed, which uses a distributed amplifier to combine Gaussian pulses of different polarities, amplitudes and delays. The center frequency and bandwidth of the synthesized pulse can be adjusted by varying the number of the Gaussian pulses and the delays between Compared to other UWB pulse generators, the present them. synthesizer is capable of higher voltages and higher efficiencies. Using 0.25-µm pHEMTs, a prototype synthesizer has been designed and fabricated with a center frequency of 4.0 GHz and a bandwidth of Under a Gaussian input pulse of 1.5 V and 100 ps, the 1.9 GHz. synthesizer outputs into $50\,\Omega$ a pulse of $4.5\,\mathrm{V}$ and $1\,\mathrm{ns}$. At a pulserepetition frequency of 10 MHz, the synthesizer consumes 1 mA at 3 Vwith 17% efficiency. Approaches to maintain high efficiency by scaling the supply voltage for different input amplitudes and pulse-repetition frequencies have also been verified experimentally.

Received 5 February 2011, Accepted 11 March 2011, Scheduled 17 March 2011 Corresponding author: Chao Fang (fang0010@e.ntu.edu.sg).

1. INTRODUCTION

Ultra-wideband (UWB) impulse radio [1] has received considerable interest recently. One of its major applications is long-range lowdata-rate communication with precision localization [2]. For this application, it is critical to generate UWB pulses with high voltage and high efficiency at low pulse-repetition frequency (PRF) while complying with spectrum regulations. Worldwide, there are many different UWB standards. The U. S. Federal Communications Commission (FCC) has allocated the 3.1–10.6 GHz band with 3–5 GHz being the low band and 6–10 GHz being the high band [3]. This paper focuses on the low band for its superior propagating characteristics.

Traditionally, there are six major methods to generate UWB One method is to generate a pulse at the baseband then pulses. up-convert it to the UWB band [4]. Such a carrier-based design tends to have complex architecture and high power consumption. Also, it requires a local oscillator, which signal can leak into the The second method is to generate a pulse directly in the output. UWB band [5]. This method usually requires more pulse-shaping filters. The third method is to synthesize the pulse waveform by using high-speed digital-to-analog converters [6]. It has both good time and amplitude resolutions, but the high sampling rate increases circuit complexity, power consumption and cost. The fourth method relies on the combination of the rising and falling edges of a clock signal [7]. The fifth method combines different delay edges with polarity control to form a short logic pulse before filtering it [8]. None of the third, fourth and fifth methods can generate high-voltage pulses. In comparison, the sixth method based on an L-C voltage-controlled oscillator (VCO) can generate a high-voltage pulse [9]. However, the fast gate bias signal required to switch the buffer driver amplifier is difficult to be implemented. Table 1 compares the amplitude, width and efficiency of UWB pulses generated by the different methods. The amplitude is measured peak to peak. The width is the full width at half maximum. The efficiency is defined as

$$\eta = \frac{\text{Peak Output Power \times Pulse Width } \times PRF}{\text{DC Power Consumption}}.$$
 (1)

Recently, we proposed [10] a variation from the fifth method by using a distributed amplifier to combine Gaussian pulses of different polarities, amplitudes and delays. The Gaussian input pulses were generated [11] directly from the rising edges of a clock signal without additional power consumption. The positive pulses are generated from reflected negative pulses without additional polarity-control circuit. As listed in Table 1, from a 1.5-V 100-ps Gaussian input pulse, the new

Amplitude (V)	Width (ns)	Efficiency	PRF (MHz)	Reference
0.26	1.5			[4]
0.5				[6]
0.68	0.25	0.94%	500	[7]
0.2	0.6	0.05%	80	[8]
5.1^{a}	0.9	7.9%	1	[9]
4.5	1.0	10%	10	[10]
4.5	1.0	17%	10	This Work
6.4	1.0	13%	5	

Table 1. Characteristics of UWB pulses generated by differencemethods.

^a Converted from 100- Ω load to 50- Ω load.

Figure 1. Schematics of (a) original and (b) simplified UWB pulse synthesizer.

method could output into $50\,\Omega$ a 4.5-V 1-ns pulse with 10% efficiency under a PRF of 10 MHz. This paper expands on [10] mainly by describing the detailed circuit design and analysis in both time and frequency domains. Approaches to maintain high efficiency by scaling the supply voltage for different input amplitudes and PRFs are also explored. The resulted improvements in both output amplitude and efficiency are listed in Table 1.

2. PULSE-SYNTHESIS METHOD

Figure 1(a) shows that the proposed UWB pulse synthesizer is based on a distributed amplifier with two branches and n taps. First, a Gaussian input pulse g(t) is divided by a power splitter into two sub-pulses $g^+(t)$

and $g^-(t)$. Second, $g^+(t)$ is delayed by τ_1 then distributed to each tap of the distributed amplified with additional delay τ_g and weight w_i^+ ($w_i^+ > 0$). In contrast, $g^-(t)$ is directly distributed to each tap with only tap-to-tap delay τ_g and is weighted by w_i^- ($w_i^- < 0$). Both $g^+(t)$ and $g^-(t)$ are terminated in matched loads to prevent reflection. Lastly, the output pulse is synthesized by combining pulses from both the positive and negative branches of the distributed amplifier as

$$V_n^{out}(t) = \sum_{i=1}^n \left\{ w_i^+ g^+ \left[t - \tau_1 - (i-1) \tau_g \right] + w_i^- g^- \left[t - (i-1) \tau_g \right] \right\}$$
(2)

Assuming ideal splitter and equal weights so that $g^+(t) = g^-(t) = g(t)/\sqrt{2}$, $w_i^+ = 1$ and $w_i^- = -1$, (2) can be simplified as

$$V_n^{out}(t) = \frac{1}{\sqrt{2}} \sum_{i=1}^n \left\{ g \left[t - \tau_1 - (i-1) \, \tau_g \right] - g \left[t - (i-1) \, \tau_g \right] \right\}.$$
(3)

The values of τ_1 , τ_g and n can be adjusted to optimize the synthesizer performance for different applications. By adjusting τ_1 , the output center frequency can be tuned. By adjusting τ_g and n, the output width can also be tuned. The adjustments can be analyzed by assuming a Gaussian input pulse of

$$g(t) = \left(A/\sqrt{2\pi\sigma^2}\right) \exp\left(-t^2/2\sigma^2\right) \tag{4}$$

where $A/\sqrt{2\pi\sigma^2}$ is the peak-to-peak amplitude and $2\sigma\sqrt{2\ln 2}$ is the full width at half maximum. The Fourier transform of (4) in the frequency domain is

$$g(\omega) = A \exp\left[-\omega^2 \sigma^2/2\right]$$
(5)

where ω is the angular frequency. From (3)–(5), the output waveform and spectrum can be analyzed for synthesizers with different numbers of taps.

When n = 1,

$$V_1^{out}(t) = \left(1/\sqrt{2}\right) \left[g\left(t - \tau_1\right) - g\left(t\right)\right]$$

$$V_1^{out}(\omega) = \left[g\left(\omega\right)/\sqrt{2}\right] \left[\exp\left(-j\omega\tau_1\right) - 1\right].$$
(6)

The corresponding power spectral density is

$$|V_1^{out}(\omega)|^2 = |g(\omega)|^2 2\sin^2(\omega\tau_1/2).$$
 (7)

Let $G_n(\omega)$ be the power gain of an *n*-tap synthesizer, then

$$\left|V_{n}^{out}\left(\omega\right)\right|^{2} = \left|g\left(\omega\right)\right|^{2} G_{n}\left(\omega\right) \tag{8}$$

Progress In Electromagnetics Research C, Vol. 20, 2011

and

$$G_1(\omega) = 2\sin^2\left(\omega\tau_1/2\right). \tag{9}$$

 $G_1(\omega)$ has peaks at $m\pi/\tau_1$ and nulls at $(m-1) \pi/\tau_1$, where m is an odd integer. This is the special case when the center frequency and bandwidth are both determined by τ_1 , because τ_g is absent when n = 1.

When n = 2,

$$V_2^{out}(t) = V_1^{out}(t) + V_1^{out}(t - \tau_g)$$

$$V_2^{out}(\omega) = V_1^{out}(\omega) \left[1 + \exp\left(-j\omega\tau_g\right)\right]$$

$$G_2(\omega) = 8\cos^2\left(\omega\tau_g/2\right)\sin^2\left(\omega\tau_1/2\right)$$
(10)

In addition to peaks at $m\pi/\tau_1$ and nulls at $(m-1)\pi/\tau_1$, $G_2(\omega)$ has nulls at $m\pi/\tau_g$. Thus, while the center frequency is determined by τ_1 , the bandwidth may be determined by τ_g if $\tau_g > \tau_1$.

When n = 3,

$$V_{3}^{out}(t) = V_{1}^{out}(t) + V_{1}^{out}(t - \tau_{g}) + V_{1}^{out}(t - 2\tau_{g})$$

$$V_{3}^{out}(\omega) = V_{1}^{out}(\omega) \left[1 + \exp(-j\omega\tau_{g}) + \exp(-j2\omega\tau_{g})\right] \qquad (11)$$

$$G_{3}(\omega) = 2 \left[1 + 2\cos(\omega\tau_{g})\right]^{2} \sin^{2}(\omega\tau_{1}/2)$$

In addition to peaks at $m\pi/\tau_1$ and nulls at $(m-1)\pi/\tau_1$, $G_3(\omega)$ has nulls at $2(m \pm 1/3)\pi/\tau_g$.

When n = 4,

$$V_4^{out}(t) = V_1^{out}(t) + V_1^{out}(t - \tau_g) + V_1^{out}(t - 2\tau_g) + V_1^{out}(t - 3\tau_g)$$

$$V_4^{out}(\omega) = V_1^{out}(\omega) \begin{bmatrix} 1 + \exp(-j\omega\tau_g) \\ + \exp(-j\omega^2\tau_g) + \exp(-j\omega^2\tau_g) \end{bmatrix} \quad . \quad (12)$$

$$G_4(\omega) = 32\cos^2(\omega\tau_g)\cos^2(\omega\tau_g/2)\sin^2(\omega\tau_1/2)$$

In addition to peaks at $m\pi/\tau_1$ and nulls at $(m-1)\pi/\tau_1$, $G_4(\omega)$ has nulls at $m\pi/2\tau_g$ and $m\pi/4\tau_g$.

Thus, the output spectra of synthesizers with different numbers of taps can be evaluated by using (9)–(12). To illustrate the cases for $\tau_g > \tau_1, \tau_g$ is fixed at $2\tau_1$. Fig. 2(a) plots gains $G_1(\omega), G_2(\omega), G_3(\omega)$, and $G_4(\omega)$ for $\tau_1 = 120$ ps and $\tau_g = 240$ ps. It can be seen that the bandwidth decreases with increasing n, so that the output energy is concentrated more in the main lobe and less in the side lobes. For example, with n = 4, the main lobe is approximately 13 dB higher than its nearest side lobe. With n = 4 and $\tau_g = 2\tau_1$, Fig. 2(b) shows that the peak frequency and bandwidth are both inversely proportional to τ_1 . Table 2 summarizes the peak frequency and 10-dB bandwidth for different τ_1 values.

According to (8), the output spectrum is determined by not only the synthesizer gain $G(\omega)$, but also the shape of the input pulse $g(\omega)$.

Figure 2. Calculated synthesizer gain with (a) $\tau_1 = 120$ ps and n = 1, 2, 3, 4 and (b) n = 4 and $\tau_1 = 100$, 120, 140, 160 ps. In all case, $\tau_g = 2\tau_1$.

Table 2. Characteristics of the synthesizer gain for different delays^a.

Figure 3. Calculated synthesizer output (a) waveform and (b) spectrum with n = 4, $\tau_1 = 120$ ps, $\tau_g = 240$ ps, and $\sigma = 100$ ps.

Using (12), Fig. 3 shows the calculated output waveform and spectrum for n = 4, $\tau_1 = 120 \text{ ps}$, $\tau_g = 240 \text{ ps}$, and $\sigma = 100 \text{ ps}$ with the peak-to-peak amplitude in the time domain normalized to 1 V and the main

Figure 4. Calculated (a) waveform and (b) spectrum of the output pulse with a Gaussian envelope formed by varying the weights w_i^+ and w_i^- of the distributed amplifier. The FCC spectral mask is overlaid in (b) as a reference.

lobe in the frequency domain normalized to 0 dB. Compared to Fig. 2, the difference between the main lobe and the nearest side lobe is now reduced from 13 dB to 10 dB by the rich low-frequency content of the Gaussian input pulse. In order to utilize the spectral mask more efficiently, the side lobes can be suppressed by adjusting the weights w_i^+ and w_i^- of the distributed amplifier so that the output pulse follows a Gaussian envelope in the time domain as shown in Fig. 4(a). Fig. 4(b) shows that in this case the main lobe in the frequency domain is more than 30 dB higher than the nearest side lobe. This approach is elaborated in the next section.

3. CIRCUIT DESIGN AND ANALYSIS

The proposed distributed UWB pulse synthesizer with a simplified architecture has been implemented in 0.25-µm gate-length depletionmode pHEMTs, which are biased in Class-C for high-efficiency operation. For the negative branch of the distributed amplifier with $w_i^$ weights, each tap is automatically switched on and off by the positive input pulse. However, the positive branch with w_i^+ weights cannot be easily implemented with the depletion-mode pHEMTs in Class-C operation. To overcome the difficulty, the power splitter and the positive branch of the distributed amplifier are eliminated and, instead, positive pulses are generated from reflected negative pulses. As shown in Fig. 1(b), in the simplified architecture, a negative pulse V_n is first formed by combining the pulses through the negative taps with w_i^-

Figure 5. Circuit schematic of the simplified UWB pulse synthesizer with one branch and four taps.

weights. The V_n pulse then travels both forward and backward as indicated by V_{nf} and V_{nb} . When the backward traveling V_{nb} passes through the delay element τ_2 to reach the short-circuited termination, a positive V_{nr} is reflected. The reflected pulse V_{nr} then travels forward to combine with V_{nf} to form an UWB pulse with both positive and negative components at the output of the distributed amplifier. Note that V_{nr} is behind V_{nf} by $2\tau_1$. Therefore, the analysis of Section 2 is still valid provided τ_1 is replaced by $2\tau_2$.

Figure 5 shows the circuit design based on the simplified architecture of Fig. 1(b) with n = 4. A conventional distributed amplifier [12] is implemented with discrete pHEMTs on a combination of ceramic and polymer boards. The typical 50- Ω termination on the drain side of the pHEMTs is replaced by a short-circuited termination after a transmission line with delay τ_2 . A short transmission line with delay τ_d meanders between the pHEMT drains, while a long transmission line with delay τ_a meanders between the pHEMT gates. As described in Section 2, the input pulse travels through τ_q and switches the pHEMTs successively, before being absorbed by a 50- Ω termination. The w_i^- weights are implemented with voltage dividers made of C_{div} and C_{gs} in series, where C_{gs} is the gate-source capacitance of each pHEMT. Bond wires L_{q1} , L_{q2} and L_d connect the pHEMTs with the transmission lines on the board and help compensate C_{div} , C_{qs} and C_{ds} to maintain the 50- Ω characteristic impedance, where C_{ds} is the drain-source capacitance of each pHEMT.

The C_{div}/C_{qs} dividers are designed to give the proper w_i^- weights

to ensure a Gaussian envelope for efficient spectrum utilization as discussed at the end of Section 2. As shown in Fig. 4(a), four successive positive pulses of amplitudes $V_1 = V_4$, $V_2 = V_3 = 2.5V_1$ and four successive negative pulses of the same amplitudes but 180° out of phase form an output pulse with a Gaussian envelope. For the present pHEMTs, $C_{gs} = 0.38$ pF. Therefore, $C_{div} = 0.25$ pF would give $V_2 = 2.5V_1$.

Giving the C_{div}/C_{gs} ratio, it is tempting to simply let $w_1^- = w_4^- = -0.4$ and $w_2^- = w_3^- = -1$. However, the w_i^- values can only be determined after considering the transistor gain and parasitic loss. This is accomplished by analyzing the detailed circuit schematic of Fig. 6(b), which is formed by inserting the linear pHEMT model of Fig. 6(a) into Fig. 5. In the analysis, the bond wires L_{g1} , L_{g2} and L_d , as well as the transmission lines τ_2 and τ_d , are assumed to be lossless. The loss $Loss_g$ associated with τ_g is estimated to be 0.35 dB. The loss associated with the channel resistance R_i is considered, but the loss associated with the drain-source resistance R_{ds} is neglected. Delays other than τ_d and τ_q are all ignored.

With $V_{gg} = -1.0$ V, each pHEMT is biased below its threshold voltage of $V_{th} = -0.8$ V and the effective input voltage V_{eff} under an input pulse of $V_{in} = 1.5$ V is

$$V_{eff1} = \frac{(V_{in} + V_{gg} - V_{th})/j\omega C_{gs}}{1/j\omega C_{gs} + 1/j\omega C_{div} + R_i} = 0.52V$$

$$V_{eff2} = \frac{(V_{in} + V_{gg} - V_{th})/j\omega C_{gs}}{10^{Loss_g/20} (1/j\omega C_{gs} + R_i)} = 1.44V$$

$$V_{eff3} = \frac{(V_{in} + V_{gg} - V_{th})/j\omega C_{gs}}{10^{2Loss_g/20} (1/j\omega C_{gs} + R_i)} = 1.20V$$

$$V_{eff4} = \frac{(V_{in} + V_{gg} - V_{th})/j\omega C_{gs}}{10^{3Loss_g/20} (1/j\omega C_{gs} + 1/j\omega C_{div} + R_i)} = 0.46V$$
(13)

With the transconductance $g_m = 80 \text{ ms}$, the current through each pHEMT is 42 mA, 100 mA, 96 mA and 37 mA, respectively. As the drain current is divided between the 50- Ω transmission lines left and right, as well as the drain-source resistance $R_{ds} = 373 \Omega$, the effective drain impedance is 23 Ω . Therefore, the output voltage for each pHEMT is 0.97 V, 2.34 V, 2.21 V and 0.86 V, which match the measured results of Section 4. From the ratio of output and input voltages on each pHEMT, $w_1^- = -0.65$, $w_2^- = -1.56$, $w_3^- = -1.50$, and $w_4^- = -0.57$.

By properly combining the output voltage of each pHEMT, the

Figure 6. (a) Linear pHEMT model and (b) detailed circuit schematic formed by inserting the pHEMT model into the circuit of Fig. 5.

forward traveling pulse at the synthesizer output is

$$V_{nf}(t) = w_1^- V_{in} (t - 3\tau_d) + w_2^- V_{in} (t - \tau_g - 2\tau_d) + w_3^- V_{in} (t - 2\tau_g - \tau_d) + w_4^- V_{in} (t - 3\tau_g) V_{nf}(\omega) = V_{in}(\omega)$$

$$\cdot \begin{cases} w_1^- \exp(-j3\omega\tau_d) + w_2^- \exp[-j\omega(\tau_g + 2\tau_d)] \\+ w_3^- \exp[-j\omega(2\tau_g + \tau_d)] + w_4^- \exp[-j3\omega\tau_g] \end{cases}$$
(14)

The backward traveling pulse V_{nb} can be similarly evaluated knowing that it is of the opposite polarity and is delayed by $2\tau_2 + 3\tau_d$. Combining V_{nf} and V_{nb} , the output pulse is

$$V_{4}^{out}(t) = V_{nf}(t) - V_{nf}(t - 2\tau_2 - 3\tau_d)$$

$$V_{4}^{out}(\omega) = V_{nf}(\omega) \{1 - \exp[-j\omega(2\tau_2 + 3\tau_d)]\}$$

$$G_{4}(\omega) = |1 - \exp[-j\omega(2\tau_2 + 3\tau_d)]|^2 \qquad (15)$$

$$\cdot \left| \begin{array}{c} w_1^- \exp(-j\omega 3\tau_d) + w_2^- \exp[-j\omega(\tau_g + 2\tau_d)] \\ + w_3^- \exp[-j\omega(2\tau_g + \tau_d)] + w_4^- \exp(-j\omega 3\tau_g) \end{array} \right|^2$$

Equation (15) can be used to calculate the synthesizer gain at any frequency. For example, Fig. 7 shows that with $\tau_2 = 60 \text{ ps}$, $\tau_g = 240 \text{ ps}$, and $\tau_d = 15 \text{ ps}$, the gain calculated by using (15) is in general agreement with that simulated by using the nonlinear TOM3 model [13] for pHEMTs and distributed transmission- line model for the delays. In both cases, the gain at a center frequency of 4.17 GHz is estimated to be 16.5 dB.

Equation (15) differs from (12) in terms of not only w_i , but also τ_d . Fig. 7 shows also the gain calculated by using (15) without τ_d .

Figure 7. Synthesizer gain calculated by using (15) with $\tau_d = 15$ ps or 0. The calculated gain for $\tau_d = 15$ ps is in general agreement with that simulated by using TOM3 pHEMT and transmission-line models.

Figure 8. Drain characteristics of the pHEMT overlaid with load lines optimized for (a) 1.5-V input with 3-V supply and (b) 2-V input with 5-V supply.

It can be seen that with τ_d reduced from 15 ps to 0, the peak gain increases from 16.5 dB to 18.6 dB. This shows that the layout of the distributed amplifier can be further optimized to minimize τ_d and to maximize the gain and efficiency of the synthesizer.

Giving the same gain but a lower PRF, the input pulse amplitude can be increased to boost the output pulse amplitude without violating the FCC regulation. With a gain of 16.5 dB and a PRF of 10 MHz, a 1.5-V 100-ps Gaussian input pulse with a spectral density of -59 dBm/MHz at 4.17 GHz would result in an output pulse with $-42.5 \,\mathrm{dBm}/\mathrm{MHz}$ at $4.17 \,\mathrm{GHz}$, which complies with the FCC regulation and agrees with the measured results of Section 4. If the PRF is reduced from 10 MHz to 5 MHz, the input amplitude can be increased from 1.5 V to 2.0 V to maintain the output spectral density of $-42.5 \,\mathrm{dBm/MHz}$ at $4.17 \,\mathrm{GHz}$. However, to maintain the same gain, the supply voltage must also be increased from 3V to 5V to accommodate the larger voltage swing as shown in Fig. 8. In general, the supply voltage must be carefully scaled to provide high output amplitude with high linearity and high efficiency. To verify the above analysis, the fabricated synthesizer was tested under different input and supply voltages as described below.

Figure 9. Photograph of the fabricated UWB pulse synthesizer.

4. RESULTS AND DISCUSSION

Figure 9 is a photograph of a synthesizer fabricated with n = 4, $\tau_2 = 60 \text{ ps}$, $\tau_g = 240 \text{ ps}$, and $\tau_d = 15 \text{ ps}$. The circuit size is approximately $20 \text{ mm} \times 30 \text{ mm}$. The delay τ_g is through a 29-mm 50- Ω microstrip line, which meanders over an area of $4 \text{ mm} \times 8 \text{ mm}$ on an alumina substrate with a thickness of 0.254 mm and a dielectric constant of 9.9. The delay τ_2 is through a 9.4 mm 50- Ω microstrip line with 2.4 mm on the alumina substrate and the remainder on a Roger RO4003C substrate with a thickness of 0.508 mm and a dielectric constant of 3.55. The alumina substrate is more suitable for chip-on-board attachment; the Roger substrate is more suitable for surface-mount components.

The fabricated synthesizer was first tested with a 1.5-V 100ps Gaussian input and a 10-MHz PRF. As discussed in Section 3, the supply voltage was optimized at 3V in this case. Fig. 10 shows the measured output waveform and spectrum. The peakto-peak amplitude is 4.5V and the full width at half maximum is 1.0 ns. The center frequency and 10-dB bandwidth are 4.0 GHz and 1.9 GHz, respectively, in compliance with the FCC low-band mask. The measured current consumption is 1 mA, which corresponds to an efficiency of 17% as defined by (1).

The same synthesizer was next tested with a 2-V 100-ps Gaussian input and a 5-MHz PRF. Fig. 11 shows the measured output waveform and spectrum. The peak-to-peak voltage is 6.4 V and the full width at half maximum remains at 1.0 ns. The spectrum remains the same in compliance with the FCC mask. The measured current consumption is 0.8 mA, which corresponds to an efficiency of 13%.

As verified in the above, the supply voltage can be scaled to provide high output amplitude with high linearity and high efficiency

Figure 10. Measured output (a) waveform and (b) spectrum of the UWB pulse synthesizer with 1.5-V 240-ps Gaussian input, 10-MHz PRF and 3-V supply. The FCC spectral mask is overlaid in (b) as a reference.

Figure 11. Measured output (a) waveform and (b) spectrum of the UWB pulse synthesizer with 1.5-V 240-ps Gaussian input, 10-MHz PRF and 3-V supply. The FCC spectral mask is overlaid in (b) as a reference.

under different input conditions. This can be accomplished by laying out additional circuitry to adjust the input amplitude and PRF for different applications and to adaptively control the supply voltage for the pulse synthesizer according to the chosen input amplitude and PRF. Such adaptive control of the supply voltage has been used to improve the linearity and efficiency of RF power amplifiers [14]. The adaptive control circuitry can be best implemented in monolithically microwave integrated circuits (MMICs).

For expeditious and low-cost proof of concept, the proposed synthesizer was demonstrated by using discrete pHEMTs. Using MMICs, the pulse generator can be integrated with the pulse synthesizer to facilitate adaptive control of the supply voltage. In addition, parasitic delays such as τ_d can be minimized for maximum gain and efficiency. In this case, higher-impedance transmission lines can be used to minimize the die size but must be carefully traded off against additional loss.

5. CONCLUSION

The above theoretical analysis and measured results confirm that the proposed distributed UWB pulse synthesizer is capable of higher output amplitude and efficiency than many other UWB pulse generators. In addition, the supply voltage can be adaptively controlled to improve the linearity and efficiency of the proposed synthesizer. Finally, the proposed synthesizer design can be implemented in MMICs for even better performance.

ACKNOWLEDGMENT

This work was supported in part by Singapore ASTAR SERC under Grant 052-121-0086.

REFERENCES

- 1. Win, M. Z. and R. A. Scholtz, "Impulse radio: How it works," *IEEE Commun. Lett.*, Vol. 2, No. 2, 36–38, Feb. 1998.
- Fontana, R. J., E. Richley, and J. Barney, "Commercialization of an ultra wideband precision asset location system," *Proc. IEEE Int. Conf. Ultra-wideband Systems Technologies*, 369–373, Nov. 2003.
- 3. Federal Communications Commission, "Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems: First report and order," Washington DC, ET-docket 98-153, FCC 02-48, 1–118, Feb. 14, 2002.
- Wentzloff, D. D. and A. P. Chandrakasan, "A 3.1–10.6 GHz ultrawideband pulse shaping mixer," Proc. IEEE Radio Frequency Integrated Circuits Symp. Dig., 83–86, Jun. 2005.
- Li, K., "Experimental study on UWB pulse generation using UWB band pass filters," Proc. IEEE Int. Conf. Ultra-wideband Systems Technologies, 103–108, Sep. 2006.
- Baranauskas, D. and D. Zelenin, "A 0.36W 6b up to 20GS/s DAC for UWB wave formation," *Proc. IEEE Int. Solid-state Circuits Conf.*, 2380–2389, Feb. 2006.

Progress In Electromagnetics Research C, Vol. 20, 2011

- Kim, H., D. Park, and Y. Joo, "All-digital low power CMOS pulse generator for UWB system," *IEE Electronics Lett.*, Vol. 40, No. 24, 1534–1535, Nov. 2004.
- Smaini, L., et al., "Single-chip CMOS pulse generator for UWB systems," *IEEE J. Solid-state Circuits*, Vol. 41, No. 7, 1551–1561, Jul. 2006.
- Diao, S. and Y. Zheng, "An ultra low power and high efficiency UWB transmitter for WPAN applications," *Proc. Europe Solid*state Circuit Conf., 386–389, Sep. 2008.
- Fang, C., C. L. Law, and J. C. M. Hwang, "High-voltage high-efficiency ultrawideband pulse synthesizer," *IEEE Microw. Wireless Compon. Lett.*, Vol. 20, 49–51, Jan. 2010.
- Low, Z. N., J. H. Cheong, and C. L. Law, "Novel low cost higher order derivative Gaussian pulse generator circuit," *Proc. Int. Conf. Communications Systems*, 30–34, Sep. 2004.
- Strid, E. W. and K. R. Gleeson, "A DC-12 GHz monolithic GaAs FET distributed amplifier," *IEEE Trans. Microw. Theory Tech.*, Vol. 30, No. 7, 969–975, Jul. 1982.
- 13. TriQuint Semiconductors, Inc., Hillsboro, Oregon, USA.
- Kimball, D., P. Draxler, J. Jeong, C. Hsia, S. Lanfranco, W. Nagy, K. Linthicum, L. Larson, and P. Asbeck, "50% PAE WCDMA basestation amplifier implemented with GaN HFETs," *IEEE Compound Semiconductor Integrated Circuit Symp. Dig.*, 89–92, Oct. 2005.