Vol. 17
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-10-29
Linearity Improvement of Cascode CMOS LNA Using a Diode Connected Nmos Transistor with a Parallel RC Circuit
By
Progress In Electromagnetics Research C, Vol. 17, 29-38, 2010
Abstract
A fully integrated 5.5 GHz high-linearity low noise amplifier (LNA) using post-linearization technique, implemented in a 0.18 μm RF CMOS technology, is demonstrated. The proposed technique adopts an additional folded diode with a parallel RC circuit as an intermodulation distortion (IMD) sinker. The proposed LNA not only achieves high linearity, but also minimizes the degradation of gain, noise figure (NF) and power consumption. The LNA achieves an input third-order intercept point (IIP3) of +8.33 dBm, a power gain of 10.02 dB, and a NF of 3.05 dB at 5.5 GHz biased at 6 mA from a 1.8 V power supply.
Citation
Chieh-Pin Chang, Wei-Chih Chien, Chun-Chi Su, Yeong-Her Wang, and Ja-Hao Chen, "Linearity Improvement of Cascode CMOS LNA Using a Diode Connected Nmos Transistor with a Parallel RC Circuit," Progress In Electromagnetics Research C, Vol. 17, 29-38, 2010.
doi:10.2528/PIERC10082411
References

1. Wong, S. K., F. Kung, S. Maisurah, M. N. B. Osman, and S. J. Hui, "Design of 3 to 5 GHz CMOS low noise amplifier for ultra-wideband (UWB) system," Progress In Electromagnetics Research C, Vol. 9, 25-34, 2009.

2. Kim, T. W., B. Kim, and K. Lee, "Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors," IEEE J. Solid-State Circuits, Vol. 39, 223-229, January 2004.

3. Kim, T. S. and B. S. Kim, "Post-linearization of cascode CMOS low noise amplifier using folded PMOS IMD sinker," IEEE Microwave and Wireless Components Letters, Vol. 16, 182-184, April 2006.

4. Zang, H., X. Fan, and E. S. Sinencio, "A low-power, linearized, ultra-wideband LNA design technique," IEEE J. Solid-State Circuits, Vol. 44, 320-330, February 2009.

5. Choi, K., T. Mukherjee, and J. Paramesh, "A linearity-enhanced wideband low-noise amplifier," IEEE RF Integrated Circuits Symp. Dig., 127-130, June 2010.

6. Chang, C. P., J. H. Chen, S. H. Hung, C. C. Su, and Y. H. Wang, "A novel post-linearization technique for fully integrated 5.5 GHz high-linearity LNA," IEEE Int. Innovative Computing, Information and Control Conf., 577-580, Kaohsiung, Taiwan, December 2009.

7. Aparin, V. and L. E. Larson, "Modified derivative superposition method for linearizing FET low-noise amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 53, 571-581, February 2005.

8. Chandrasekhar, V., C. M. Hung, Y. C. Ho, and K. Mayaram, "A packaged 2.4 GHz LNA in a 0.15 μm CMOS process with 2 kV HBM ESD protection," IEEE Int. Solid-State Conf. Dig. Tech. Papers, 347-350, September 2002.

9. Youn, Y. S., J. H. Chang, K. J. Koh, Y. J. Lee, and H. K. Yu, "A 2 GHz 16dBm IIP3 low noise amplifier in 0.25 μm CMOS technology," IEEE Int. Solid-State Circuits Conf., 452-453, San Francisco, CA, February 2003.

10. Im, D., I. Nam, H. Kim, and K. Lee, "A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner," IEEE J. Solid-State Circuits, Vol. 44, 686-698, March 2009.