Vol. 11
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-11-06
A 900-MHz 30-dBm Bulk CMOS Transmit/Receive Switch Using Stacking Architecture, High Substrate Isolation, and RF Floated Body
By
Progress In Electromagnetics Research C, Vol. 11, 91-107, 2009
Abstract
This paper presents comprehensive methods for the design of a 900-MHz CMOS transmit/receive (T/R) switch with high power-handling capability. Techniques such as RF floated body to extend the bandwidth and decrease the insertion loss, and stacking architecture with high substrate isolation to enhance the power-handling capability are used for the design of a T/R switch on a standard 0.18um triple-well CMOS process. The measured performance of the T/R switch demonstrates the effectiveness of the methods presented in this paper such that insertion loss less than 1.0 dB, isolation up to 35.2 dB, and input 1-dB compression point of 30-dBm can be achieved at 900-MHz.
Citation
Yih-Hsia Lin, Chun-Hsueh Chu, Da-Chiang Chang, Jeng Gong, and Ying-Zong Juang, "A 900-MHz 30-dBm Bulk CMOS Transmit/Receive Switch Using Stacking Architecture, High Substrate Isolation, and RF Floated Body," Progress In Electromagnetics Research C, Vol. 11, 91-107, 2009.
doi:10.2528/PIERC09100105
References

1. Uda, H., T. Yamada, T. Sawai, K. Nogawa, and Y. Harada, "High-performance GaAs switch IC's fabricated using MESFET's with two kinds of pinch-off voltage and a symmetrical pattern configuration," IEEE Jounal of Solid-State Circuit, Vol. 29, 1262-1269, 1994.
doi:10.1109/4.315213

2. Tokumitsu, T., I. Toyoda, and M. Aikawa, "A low-voltage, high-power T/R-switch MMIC using LC resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 5, 997-1003, 1995.
doi:10.1109/22.382055

3. Miyatsuji, K. and D. Ueda, "A GaAs high power RF single pole dual through switch IC for digital mobile communication system," IEEE Jounal of Solid-State Circuit, Vol. 30, No. 9, 979-983, 1995.
doi:10.1109/4.406396

4. Imai, N., A. Minakawa, and H. Okazaki, "Novel high-isolation FET switches," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 5, 685-691, May 1996.
doi:10.1109/22.493921

5. Raghavan, A., H. Deukhyoun, M. Moonkyun, A. Sutono, L. Kyutae, and J. Laskar, "A 2.2-V operation, 2.4-GHz single-chip GaAs MMIC transceiver for wireless applications," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 1019-1022, 2002.

6. Makioka, S., Y. Anda, K. Miyatsuji, and D. Ueda, "Super self-aligned GaAs RF switch IC with 0.25 dB extremely low insertion loss for mobile communication systems," IEEE Transactions on Electron. Devices, Vol. 48, No. 8, 1510-1514, 2001.
doi:10.1109/16.936499

7. Mil'shtein, S. and C. Liessner, "High speed switch using pairs of pHEMTs with shifted gates," Microelectronics Journal, Vol. 36, No. 3--6, 316-318, 2005.
doi:10.1016/j.mejo.2005.02.052

8. Huang, F.-J. and K. O, "A 0.5 μm CMOS T/R switch for 900-MHz wireless application," IEEE Journal of Solid-State Circuits, Vol. 36, No. 3, 486-492, 2001.
doi:10.1109/4.910487

9. Huang, F.-J. and K. O, "Single-pole double-throw CMOS switches for 900-MHz and 2.4-GHz applications on p-silicon substrates," IEEE Journal of Solid-State Circuits, Vol. 39, 35-41, 2004.
doi:10.1109/JSSC.2003.820857

10. Li, Z., H. Yoon, F.-J. Huang, and K. O, "5.8-GHz CMOS T/R switches with high and low substrate resistances in a 0.18 μm CMOS process," IEEE Microwave Wireless Components Letters, Vol. 13, 1-3, Jan. 2003.

11. Ohnakado, T., S. Yamakawa, T. Murakami, A. Furukawa, E. Taniguchi, H. Ueda, N. Suematsu, and T. Oomori, "21.5-dBm power-handling 5-GHz transmit/receive CMOS switch realized by voltage division e®ect of stacked transistor configuration with depletion-layer-extended transistors (DETs)," IEEE Journal of Solid-State Circuits, Vol. 39, 577-584, Apr. 2004.
doi:10.1109/JSSC.2004.825231

12. Talwalker, N., C. P. Yue, and S. S. Wong, "An integrated 5.2 GHz CMOS T/R switch with LC-tuned substrate bias," 2003 International Solid-State Circuits Conference Digest of Technical Papers, 362-363, Feb. 2003.

13. Talwalker, N. A., C. P. Yue, and S. S. Wong, "Integrated CMOS transmit-receive switch using LC-tuned substrate bias for 2.4-GHz and 5.2-GHz applications," IEEE Journal of Solid-State Circuits, Vol. 39, 863-870, 2004.
doi:10.1109/JSSC.2004.827809

14. Yeh, M.-C., Z.-M. Tsai, R.-C. Liu, K.-Y. Lin, Y.-T. Chang, and H. Wang, "Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 31-39, Jan. 2006.
doi:10.1109/TMTT.2005.860894

15. Wu, W., S. Lam, and M. Chan, "A wide-band T/R switch using enhanced compact waffle MOSFETs," IEEE Microwave Wireless Components Letters, Vol. 16, 287-289, 2006.

16. Xu, H. and K. O, "A 31.3-dBm bulk CMOS T/R switch using stacked transistors with sub-design-rule channel length in floated p-wells," IEEE Journal of Solid-State Circuits, Vol. 42, 2528-2534, 2007.
doi:10.1109/JSSC.2007.907201

17. Tinella, C., J. M. Fournier, D. Belot, and V. Knopik, "A high-performance CMOS-SOI antenna switch for the 2.5--5 GHz band," IEEE Journal of Solid-State Circuits, Vol. 38, No. 7, 1279-1283, Jul. 2003.
doi:10.1109/JSSC.2003.813289