Vol. 3
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-06-16
Theoretical Analysis of Bit Error Rate of Satellite Communication in Ka-Band Under Spot Dancing and Decrease in Spatial Coherence Caused by Atmospheric Turbulence
By
Progress In Electromagnetics Research C, Vol. 3, 225-245, 2008
Abstract
We study the influence of atmospheric turbulence on satellite communication by the theoretical analysis of propagation characteristics of electromagnetic waves through inhomogeneous random media. The analysis is done by using the moment of wave fields given on the basis of a multiple scattering method. We numerically analyze the degree of the spatial coherence (DOC) of electromagnetic waves on a receiving antenna and the bit error rate (BER) of the Geostationary Earth Orbit (GEO) satellite communication in Ka-band at low elevation angles on the assumption that the spatial coherence of received waves decreases and spot dancing only occurs. In this analysis, we consider the Gaussian and the Kolmogorov models for the correlation function of inhomogeneous random media. From the numerical analysis, we find that the increase in BER for the uplinkcomm unication is caused by the decrease in the average intensity due to spot dancing of received beam waves and that the increase in BER for the downlinkcomm unication is caused by the decrease in DOC of received beam waves. Furthermore, we find that the decrease in DOC of received waves and the increase in BER becomes much more in the Kolmogorov model than in the Gaussian model.
Citation
Tatsuyuki Hanada, Kiyotaka Fujisaki, and Mitsuo Tateiba, "Theoretical Analysis of Bit Error Rate of Satellite Communication in Ka-Band Under Spot Dancing and Decrease in Spatial Coherence Caused by Atmospheric Turbulence," Progress In Electromagnetics Research C, Vol. 3, 225-245, 2008.
doi:10.2528/PIERC08053002
References

1. Strohbehn, J. W., "Line-of-sight wave propagation through the turbulent atmosphere," Proceedings of the IEEE, Vol. 56, No. 8, 1301-1318, 1968.
doi:10.1109/PROC.1968.6572

2. Fante, R. L., "Electromagnetic beam propagation in turbulent media," Proceedings of the IEEE, Vol. 63, No. 12, 1669-1692, 1975.
doi:10.1109/PROC.1975.10035

3. Tateiba, M., "Analysis of antenna gain reduction due to inhomogeneous fluctuations of random media," 1984 International Symposium on Electromagnetic Compatibility, Vol. 1, 474-478, Institute of Electrical and Electronics Engineers, New York, 1984.

4. Tateiba, M. and T. Yokoi, "Analysis of antenna gain reduction due to ionospheric and atmospheric turbulence," Proceedings of ISAP’85, 711-714, 1985.

5. Yamada, K., K. Fujisaki, and M. Tateiba, "Analysis of the bit error due to the arrival-angle fluctuation in Ka-band satellite turbulent channels ," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 8, 1135-1151, 2002.
doi:10.1163/156939302X00679

6. Tateiba, M., "Mechanism of spot dancing," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 4, 493-496, 1975.
doi:10.1109/TAP.1975.1141110

7. Tateiba, M., "Multiple scattering analysis of optical wave propagation through inhomogeneous random media," Radio Science, Vol. 17, No. 1, 205-210, 1982.
doi:10.1029/RS017i001p00205

8. Tateiba, M., "Some useful expression for spatial coherence functions propagated through random media," Radio Science, Vol. 20, No. 5, 1019-1024, 1985.
doi:10.1029/RS020i005p01019

9. Ishimaru, A., Wave Propagation and Scattering in Random Media, IEEE Press, 1997.

10. Zhang, S. and J. Jin, Computation of Special Functions, John Wiley & Sons, Inc., 1996.

11. Andrews, L. C. and R. L. Phillips, Laser Beam Propagation through Random Media, SPIE Press, 2005.

12. Wheelon, A. D., Electromagnetic Scintillation II. Weak Scattering, Cambridge University Press, 2003.