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Abstract—We study the influence of atmospheric turbulence on
satellite communication by the theoretical analysis of propagation
characteristics of electromagnetic waves through inhomogeneous
random media. The analysis is done by using the moment of wave
fields given on the basis of a multiple scattering method.

We numerically analyze the degree of the spatial coherence
(DOC) of electromagnetic waves on a receiving antenna and the bit
error rate (BER) of the Geostationary Earth Orbit (GEO) satellite
communication in Ka-band at low elevation angles on the assumption
that the spatial coherence of received waves decreases and spot dancing
only occurs. In this analysis, we consider the Gaussian and the
Kolmogorov models for the correlation function of inhomogeneous
random media. From the numerical analysis, we find that the increase
in BER for the uplink communication is caused by the decrease in
the average intensity due to spot dancing of received beam waves and
that the increase in BER for the downlink communication is caused
by the decrease in DOC of received beam waves. Furthermore, we find
that the decrease in DOC of received waves and the increase in BER
becomes much more in the Kolmogorov model than in the Gaussian
model.
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1. INTRODUCTION

In satellite communication, random fluctuation of the dielectric
constant of the atmosphere affects propagation characteristics of
electromagnetic waves. In particular, satellite communication in high
frequencies, such as the Geostationary Earth Orbit (GEO) satellite
communication in Ka-band, is significantly affected by atmospheric
turbulence at low elevation angles. It causes spreading of the beam
wave, decrease in the spatial coherence of received waves, spot dancing
of beam waves and scintillation of received intensities. These effects
result in degrade of satellite link quality, such as the increase in bit
error rate (BER).

Many studies on influences of atmospheric turbulence on satellite
communication in high frequencies have been made theoretically [1–5].
In some of these studies, the influences are analyzed as the problem of
wave propagation through inhomogeneous random media. The analysis
is done by using the moment of wave fields given on the basis of a
multiple scattering method [6, 7]. Using this method, BER of the
GEO satellite communication in Ka-band under spot dancing has been
analyzed numerically, where BER is derived from the integration of the
average intensity on a receiving antenna [5].

However, in case that the spatial coherence of received waves is
decreased and the spatial coherence radius is not much larger than
a radius of the aperture of a receiving antenna, it is not enough to
analyze BER by using the integration of the average intensity. In this
case, BER has to be analyzed by using the mutual coherence function
which includes effects of the spatial coherence of received waves.

In this paper, we numerically analyze the BER derived from the
received power using the mutual coherence function on a receiving
antenna as well as the BER derived from the integration of the average
intensity on a receiving antenna, as shown in Reference [5]. From a
result of the analysis, we consider influences of spot dancing and spatial
coherence of received waves caused by atmospheric turbulence on BER
of the GEO satellite communication in Ka-band at low elevation angles.

2. FORMULATION

2.1. Second Moment of Wave Fields

We assume that an inhomogeneous random medium, which represents
atmospheric turbulence, is characterized by the fluctuation of
the dielectric constant. The dielectric constant ε, the magnetic
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permeability µ and the conductivity σ are expressed as

ε = ε0 [1 + δε(r, z)] (1)
µ = µ0 (2)
σ = 0, (3)

where r = ixx + iyy (ix and iy denote the unit vectors of x and y
coordinates), ε0 and µ0 are the dielectric constant and the magnetic
permeability for free space, respectively. δε(r, z) is a Gaussian random
function with the properties:

〈δε(r, z)〉 = 0 (4)
〈δε(r1, z1) · δε(r2, z2)〉 = B(r−, z+, z−), (5)

where r− = r1 − r2, z+ = (z1 + z2)/2, z− = z1 − z2 and the
bracket notation 〈·〉 denotes an ensemble average of the quantity inside
the brackets. Thus the medium fluctuates inhomogeneously in the z
direction and homogeneously in the r direction. Moreover, we assume
that for any z,

B(0, z, 0) � 1, kl(z) � 1, (6)

where k = 2πf/c is the wave number for free space (f is frequency
and c is velocity of light), and l(z) is the local correlation length of
δε(r, z). The medium changes little the state of polarization of the
wave under the condition (6), and the present analysis can be made in
the scalar approximation. In addition, the forward scattering and the
small angle approximations can be applied.

We represent u(r, z) as a successively forward scattered wave with
exp(−jwt) time dependence in the inhomogeneous random medium.
The second moment of u(r, z) is given as the solution to the moment
equation [7] by:

M11(r+, r−, z) = 〈u(r1, z)u∗(r2, z)〉

=
1

(2π)2

∫
dκ+M̂ in

11(κ+, r−, z)

· exp
[
jκ · r− − k2

4

∫ z

0
dz1

∫ z−z1

0
dz2

·D
(
r− − z2

k
κ, z − z2 −

z1

2
, z1

)]
, (7)
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where r+ = (r1 + r2)/2, r− = r1 − r2, and

D (r, z1, z2) = 2 [B (0, z1, z2) −B (r, z1, z2)] (8)

M̂ in
11(κ+, r−, z) =

∫
dr+M in

11(r+, r−, z) exp (−jκ+ · r+) (9)

M in
11(r+, r−, z) = uin(r1, z)u∗

in(r2, z). (10)

uin(r, z) represents a transmitted wave which is a wave function in free
space, where δε(r, z) = 0.

2.2. Transmitted Wave Model

A transmitted wave in free space is assumed to be a Gaussian beam
wave, where the transmitting antenna is located in the plane z = 0 and
the amplitude distribution is Gaussian with the minimum spot size w0

at z = −z0 and w0 denotes the radius at which the field amplitude
falls to 1/e of that on the beam axis. Then, the wave field is given [8]
by

uin(r, z) = (2A/π)1/2w−1 exp[−(1 − jp)r2/w2 + j(kz − β)], (11)

where A is constant, r = |r| and

w = w0(1 + p2)1/2 (12)
p = 2(z + z0)/(kw2

0) (13)
β = tan−1 p. (14)

Therefore, M in
11(r+, r−, z) is given by

M in
11(r+, r−, z) =

2A
πw2

exp
[
− 2

w2
r2
+ + j

2p
w2

(r+ · r−) − r2
−

2w2

]
. (15)

2.3. Correlation Function of Random Dielectric Constant

We assume that the correlation function of random dielectric constant
B(r+, z+, z−) can be expressed in terms of infinite power series in
allover r space as follows:

B(r−, z+, z−) = B(0, z+, z−) +
∞∑
i=1

a2i(z+, z−)r2i
− (16)

a2i(z+, z−) =

[(
∇2

)i
B(r−, z+, z−)

]
r−=0

[2i(i!)]2
, i = 0, 1, 2, . . . . (17)
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where ∇ = ix∂/∂x + iy∂/∂y. From (16), the structure function
D(r−, z+, z−) defined by (8) can be also expressed in terms of the
infinite power series:

D(r−, z+, z−) =
∞∑
i=0

b2i(z+, z−)r2(i+1)
− , (18)

where

b2i(z+, z−) = −2a2(i+1)(z+, z−), i = 0, 1, 2, . . . . (19)

It has been already shown that the r2 term in D(r−, z+, z−) gives rise
to the ideal spot dancing of received beam waves in which the arrival
position is normally distributed but each amplitude keeps the same
form [6, 7].

We consider here an effect of the r2 term only in D(r−, z+, z−)
as follows:

D(r−, z+, z−) = b0(z+, z−)r2
−. (20)

Substituting (20) into (7), we get the second moment under the ideal
spot dancing:

M11(r+, r−, z) =
∫

dr′M in
11(r+ − r′, r−, z)

· 1
2πσ2

0

exp
[
−σ2

2

2
(kr−)2

− 1
2σ2

0

(
r′ − jσ2

1kr−
)2

]
, (21)

where

σ2
n =

1
2

∫ z

0
dz1

∫ z−z1

0
dz2z

2−n
2 b0

(
z − z2 −

z1

2
, z1

)
, n = 0, 1, 2, (22)

which represents the whole effects of random dielectric constant on the
second moment. Furthermore, (22) can be expressed approximately by
the following equation (See Appendix A):

σ2
n 	 1

2

∫ z

0
dz1

∫ ∞

0
dz2(z − z1)2−nb0(z1, z2). (23)
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Finally, the substitution of (15) into (21) yields the second moment of
Gaussian beam wave:

M11(r+, r−, z) =
∫

dr′
2A
πw2

exp
{
− 2

w2
(r+ − r′)2

+j
2p
w2

[
(r+ − r′) · r−

]
− r2

−
2w2

}

· 1
2πσ2

0

exp
(
− r′2

2σ2
0

)
exp

(
jk

σ2
1

σ2
0

r− · r′
)

· exp
[
k2r2

−

(
σ4

1

2σ2
0

− σ2
2

2

)]
. (24)

We deduce (23) by using two type of the correlation function which
are the Gaussian and the Kolmogorov models.

2.3.1. Gaussian Model

In many practical situations, a random medium may be approximated
by the Gaussian correlation function:

B(r−, z+, z−) = B(z+) exp
[
−r2

− + z2
−

l2(z+)

]
, (25)

where B(z+) and l(z+) are the local intensity and the correlation length
of the random medium, respectively. We then obtain

σ2
n =

√
π

2

∫ z

0
dz1(z − z1)2−nB(z1)

l(z1)
, n = 0, 1, 2. (26)

2.3.2. Kolmogorov Model

The Kolmogorov model is known to be a good approximation for
atmospheric turbulence. Here we use the von Karman spectrum which
is the modified model of the Kolmogorov spectrum. The von Karman
spectrum is defined by the following equation [9]:

Φn(κ, z+) = 0.033C2
n(z+)

exp
[
−κ2/κ2

m(z+)
]

[
κ2 + 1/L2

0(z+)
]11/6

, 0 ≤ κ < ∞ (27)

κ2
m(z+) = 5.92/l0(z+)

where C2
n(z+) is the refractive index structure constant, L0(z+) is the

outer scale of turbulence and l0(z+) is the inner scale of turbulence,
whose scales are here assumed to be functions of the altitude.
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Under the assumption of a statistically homogeneous and isotropic
atmosphere, the spectrum is related to the correlation function of
random refractive index Bn(r−, z+, z−) by the following Fourier
transform:

Bn(r−, z+, z−) = 4π
∫ ∞

0

sinκ
√

r2
− + z2

−√
r2
− + z2

−
κΦn(κ, z+)dκ. (28)

Furthermore, when B(r−, z+, z−) 	 4Bn(r−, z+, z−) is assumed, the
correlation function of random dielectric constant is given by

B(r−, z+, z−) = 16π
∫ ∞

0

sinκ
√

r2
− + z2

−√
r2
− + z2

−
κΦn(κ, z+)dκ. (29)

Using (27) and (29), we obtain

σ2
n = 0.033π2

∫ z

0
dz1(z − z1)2−nC2

n(z1)
(

1
L0(z1)

)1/3

·U
(

2;
7
6
;

1
L2

0(z1)κ2
m(z1)

)
, (30)

where U(a, b, z) is the confluent hypergeometric function of the second
kind [10].

Conducting the limit of B(r−, z+, z−) as r− and z− approach zero
in (29), we have C2

n(z+) related with the local intensity of the random
media B(z+) = B(0, z+, 0) as follows:

C2
n(z+) =

[
4π3/2 · 0.033

(
1

L0(z+)

)−2/3

·U
(

3
2
;

2
3
;

1
L2

0(z+)κ2
m(z+)

)]−1

B(z+). (31)

Therefore, (30) can be described in terms of the local intensity of the
random media B(z1):

σ2
n =

√
π

4

∫ z

0
dz1(z − z1)2−n B(z1)

L0(z1)

U

(
2;

7
6
;

1
L2

0(z1)κ2
m(z1)

)

U

(
3
2
;

2
3
;

1
L2

0(z1)κ2
m(z1)

) ,

n = 0, 1, 2. (32)
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2.4. Complex Degree of Coherence of Received Waves

We examine the loss of spatial coherence of received waves on the
aperture of a receiving antenna by the complex degree of coherence
(DOC) defined by the second moment [11]:

DOC(r, z) =
M11(0, r, z)

[M11(r/2, 0, z)M11(−r/2, 0, z)]1/2

= exp
({

2
w2 + 4σ2

0

[
− σ2

0

w2
(1 + p2)

+kσ2
1(p + kσ2

1)
]
− k2σ2

2

2

}
r2

)
, (33)

where r is the separation distance between received wave fields at two
points on the aperture.

2.5. BER Derived from the Average Intensity

We define the BER derived from the average intensity received by an
aperture antenna, whose derivation is the same as Reference [5].

We define the average intensity in free space on the receiving
antenna with a Gaussian distribution of attenuation across the
aperture as follows:

Iin(z) =
∫

Sa

uin(r, z)g(r) [uin(r, z)g(r)]
∗ dr

=
∫

Sa

M in
11(r, 0, z) [g(r)]2 dr, (34)

where

g(r) = exp
(
− r2

σ2
a

)
, σ2

a = 2a2 (35)

and Sa is the circular area with the aperture radius a. Similarly,
the average intensity of the received wave through the inhomogeneous
random medium is defined by

〈I(z)〉 =
∫

Sa

M11(r, 0, z) [g(r)]2 dr. (36)

We define the energy per bit Eb as the products of the intensity
and the bit time Tb; then, Eb in free space is given by

Eb = Tb · Iin(z) = Tb ·
∫

Sa

M in
11(r, 0, z) [g(r)]2 dr. (37)
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Similarly, Eb in the inhomogeneous random medium is defined by:

〈Eb〉 = Tb · 〈I(z)〉 = Tb ·
∫

Sa

M11(r, 0, z) [g(r)]2 dr. (38)

We consider QPSK modulation which is very popular among
satellite communication. It is known that BER in QPSK modulation
is defined by:

PE =
1
2
erfc

(√
Eb

N0

)
, (39)

where erfc(x) is the complementary error function. We define the BER
derived from the average intensity on a receiving antenna in order to
evaluate the influence of atmospheric turbulence as follows:

PEI =
1
2
erfc




√
〈Eb〉
N0


 . (40)

And then, using Eb in free space obtained by (37), the BER derived
from the average intensity is expressed by:

PEI =
1
2
erfc

(√
SI ·

Eb

N0

)
, (41)

where

SI =
〈Eb〉
Eb

=
Tb · 〈I(z)〉
Tb · Iin(z)

=
〈I(z)〉
Iin(z)

=

∫
Sa

M11(r, 0, z) [g(r)]2 dr∫
Sa

M in
11(r, 0, z) [g(r)]2 dr

=
1

1 + (2σ0/w)2

(
1

1 + (2σ0/w)2
1
w2

+
1
σ2

a

)−1

·
{

1 − exp
[
−2

(
1

1 + (2σ0/w)2
1
w2

+
1
σ2

a

)
a2

]}

·
(

1
w2

+
1
σ2

a

) {
1 − exp

[
−2

(
1
w2

+
1
σ2

a

)
a2

]}−1

. (42)

2.6. BER Derived from the Average Received Power

We define the BER derived from the average received power using
the mutual coherence function of received wave fields on a receiving
antenna.
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Here we assume a parabolic antenna as a receiving antenna. When
a point detector is placed at the focus of a parabolic concentrator, the
instantaneous response in the receiving antenna is proportional to the
electric field strength averaged over the area of the reflector. When
the aperture size is large relative to the electromagnetic wavelength,
the electric field strength averaged over the area of the reflector can be
described [12] by

uin =
1
Sa

∫
Sa

uin(r, z)g(r)dr, (43)

where Sa is the circular area of a reflector with a radius a and g(r)
defined by (35) is the field distribution of attenuation across the
reflector. Then, the power received by the antenna is given by

Pin(z) = Sa ·
Re[uin · uin

∗]
Z0

=
1

SaZ0
· Re

[∫
Sa

∫
Sa

uin(r1, z)g(r1) [uin(r2, z)g(r2)]
∗ dr1dr2

]

=
1

SaZ0
· Re

[∫
Sa

∫
Sa

M in
11(r+, r−, z)g(r1)g(r2)dr1dr2

]
, (44)

where Re[x] denotes the real part of x and Z0 is the characteristic
impedance. Similarly, the average received power in the inhomoge-
neous random medium is given by

〈P (z)〉 =
1

SaZ0
· Re

[∫
Sa

∫
Sa

M11(r+, r−, z)g(r1)g(r2)dr1dr2

]
. (45)

We define Eb as the products of the average received power and
the bit time Tb; then, Eb in free space is given by

Eb =Tb · Pin(z)=
Tb

SaZ0
· Re

[∫
Sa

∫
Sa

M in
11(r+, r−, z)g(r1)g(r2)dr1dr2

]
(46)

Similarly, Eb in the inhomogeneous random medium is defined by:

〈Eb〉 = Tb ·〈P (z)〉= Tb

SaZ0

·Re
[∫

Sa

∫
Sa

M11(r+, r−, z)g(r1)g(r2)dr1dr2

]
(47)
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From the above, the BER derived from the average received power
is obtained as same as the BER shown in the previous section.

PEP =
1
2
erfc




√
〈Eb〉
N0


 =

1
2
erfc

(√
SP · Eb

N0

)
, (48)

where

SP =
〈Eb〉
Eb

=
Tb · 〈P (z)〉
Tb · Pin(z)

=
〈P (z)〉
Pin(z)

=
Re

[∫
Sa

∫
Sa

M11(r+, r−, z)g(r1)g(r2)dr1dr2

]

Re
[∫

Sa

∫
Sa

M in
11(r+, r−, z)g(r1)g(r2)dr1dr2

]

= C0

∫ a

0
dr1

∫ a

0
dr2r1r2 exp

[
C1(r2

1 + r2
2)

]
· cos

[
C2(r2

1 − r2
2)

]
I0(C3r1r2) (49)

C0 =
4

[
(w2 + σ2

a)
2 + p2σ4

a

]
w2σ2

a(4σ2
a + w2)

{
1 + exp

[
−2

(
1
w2

+
1
σ2

a

)
a2

]

−2 exp
[
−

(
1
w2

+
1
σ2

a

)
a2

]
cos

[
p

w2

(
1
w2

+
1
σ2

a

)
a2

]}

C1 = − 1
4σ2

0 + w2

(
1 +

2σ2
0

w2
0

)
+

2kσ2
1(kσ

2
1 + p)

4σ2
0 + w2

− k2σ2
2

2
− 1

σ2
a

C2 =
2kσ2

1 + p

4σ2
0 + w2

C3 =
1

4σ2
0 + w2

4σ2
0

w2
0

− kσ2
1(kσ

2
1 + p)

4σ2
0 + w2

+ k2σ2
2,

and I0(x) is the modified Bessel function of the first kind.
In case that the spatial coherence of received waves on a

receiving antenna keeps constant; therefore, it is satisfied that
M11(r+, r−, z)g(r1)g(r2) = M11(r1, 0, z)g(r1)g(r1), PEP shown in
(48) is equal to PEI derived from the average intensity shown in (41).
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3. RESULT

3.1. Model of Numerical Analysis

3.1.1. Atmospheric Turbulence

We assume a profile model of the local intensity of atmospheric
turbulence as shown in Figure 1. In satellite communication
in Ka-band, it is known that atmospheric turbulence mainly
affects propagation characteristics of electromagnetic waves and the
ionospheric turbulence can be neglected [5]. Therefore, we consider
only atmospheric turbulence here. We assume the local intensity of
atmospheric turbulence as a function of altitude h from the ground as
follows:

B(h) = Ba

[
1 −

(
h

d1

)2
]
, 0 ≤ h ≤ h1

= 0, elsewhere, (50)

where Ba is the maximum value of B(h), h1 is the altitude of
the atmosphere from the ground and d1 is the decay length of the
atmosphere.

When the elevation angle is θ, then (50) is given as a function of
z for the uplink communication:

B(z) = Ba


1 −

(√
z2 + R2 + 2zR sin θ −R

d1

)2

 ,

0 ≤ z ≤
√

(h1 + R)2 − (R cos θ)2 −R sin θ

= 0, elsewhere. (51)

Similarly, the local intensity for the downlink communication is given
by

B(z) = Ba


1 −

(√
z2 + R2 + 2zR sin θ −R

d1

)2

 ,

√
(R + L)2 − (R cos θ)2 −

√
(h1 + R)2 − (R sin θ)2 ≤ z

= 0, elsewhere. (52)

We assume parameters of atmospheric turbulence as shown in
Table 1. Here we assume that the correlation length, the outer and
the inner scale of turbulence are constant for simplicity.
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Figure 1. Model of atmospheric turbulence.

Table 1. Model of atmospheric turbulence.
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Table 2. Model of a satellite and a ground station.

3.1.2. Satellite and Ground Station

We assume the GEO satellite communication in Ka-band in the
present analysis. The frequencies for the uplink and the downlink
communications, the elevation angle from the ground station to the
satellite, and parameters about a transmitting and a receiving antenna
are shown in Table 2.

Figure 2. DOC as a function of
the separation distance r for the
uplink GEO satellite communica-
tion using the Gaussian model.

Figure 3. Same as Figure 2 ex-
cept using the Kolmogorov model.
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3.2. Numerical Analysis

3.2.1. Complex Degree of Coherence of Received Waves

Figures 2 and 3 show DOC given by (33) in the uplink
communication through atmospheric turbulence which only exists near
the transmitting antenna. These are analyzed by using the Gaussian
and the Kolmogorov models, respectively. It is shown that DOC is
nearly equal to 1; therefore, the spatial coherence radius is much larger
than a radius of a receiving antenna of the GEO satellite.

Figure 4. DOC as a function of
the separation distance r for the
downlink GEO satellite communi-
cation using the Gaussian model.

Figure 5. Same as Figure 4 ex-
cept using the Kolmogorov model.

Figures 4 and 5 show DOC in the downlink communication
through atmospheric turbulence which only exists near the receiving
antenna. It is shown that DOC decreases; therefore, the spatial
coherence radius is not much larger than a radius of a receiving antenna
of the ground station. Moreover, it is shown that DOC using the
Kolmogorov model decreases much more than DOC using the Gaussian
model.

3.2.2. Bit Error Rate

Figures 6 and 7 show BER for the uplink communication through the
strong atmospheric turbulence (Ba = 10−12) using the Gaussian and
the Kolmogorov models, respectively. The dotted line shows the BER
(PEI) derived from the average intensity given by (41). The solid line
shows the BER (PEP) derived from the average received power given
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Figure 6. BER in strong atmo-
spheric turbulence (Ba = 10−12)
for the uplink GEO satellite com-
munication using the Gaussian
model.

Figure 7. Same as Figure 6 ex-
cept using the Kolmogorov model.

Figure 8. BER in strong
atmospheric turbulence (Ba =
10−12) for the downlink GEO
satellite communication using the
Gaussian model.

Figure 9. Same as Figure 8 ex-
cept using the Kolmogorov model.

by (48). The broken line shows BER in free space as reference. It is
assumed that w0 = a = 1.2 [m]. For the Kolmogorov model, PEI is
increased as compared with BER in free space and PEP is identical to
PEI. The result of PEP = PEI was expected from Figure 3.

Figures 8 and 9 show BER for the downlink communication
through the strong atmospheric turbulence. For the Kolmogorov
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Figure 10. BER in strong
atmospheric turbulence (Ba =
10−12) for the downlink GEO
satellite communication in a =
2.5 [m] using the Gaussian model.

Figure 11. Same as Figure 10 ex-
cept using the Kolmogorov model.

Figure 12. BER in strong
atmospheric turbulence (Ba =
10−12) for the downlink GEO
satellite communication in a =
5.0 [m] using the Gaussian model.

Figure 13. Same as Figure 12 ex-
cept using the Kolmogorov model.

model, it is shown that PEI is almost identical to BER in free space,
but PEP increases a little as compared with BER in free space.

Figures 10 to 13 show BER for the downlink communication when
a radius of a receiving antenna is larger than the radius in Figures 8
and 9. Figures 10 and 11 show BER in a = 2.5 [m], and Figures 12
and 13 show BER in a = 5.0 [m].
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It is shown for the Kolmogorov model that the larger a radius of
a receiving antenna becomes, the bigger a difference between PEP and
PEI becomes, because of the result shown in Figure 5.

On the other hand, for the Gaussian model, PEI and PEP are
almost same as BER in free space for both the uplink and the downlink
communication.

4. DISCUSSION

In the uplink communication using the Kolmogorov model, it is shown
that PEI derived from the average intensity increases in the strong
turbulence compared with BER in free space by Figure 7. The increase
in BER is caused by the decrease in the average received intensity due
to spot dancing of received beam waves. On the other hand, the spatial
coherence radius is much larger than a radius of a receiving antenna
and then the spatial coherence of received waves keeps enough on a
receiving antenna as shown in Figure 3. This indicates that there
are little influences of the decrease in the spatial coherence on BER.
For this reason, PEP considering the spatial coherence of received
waves is almost identical to PEI derived from the average intensity
in Figure 7. After all, we find that the decrease in the average received
intensity due to spot dancing causes the increase in BER for the uplink
communication.

In the downlink communication using the Kolmogorov model,
PEI derived from the average intensity increases little, as shown
in Figures 9, 11 and 13. This indicates that the influence of spot
dancing is very small. On the other hand, the spatial coherence of
received waves decrease considerably in the strong turbulence and
then the spatial coherence radius is not large enough relative to a
radius of a receiving antenna, as shown in Figure 5. Because of the
decrease in the spatial coherence of received waves, PEP considering
the spatial coherence of received waves is increased in Figures 9, 11
and 13. Furthermore, in case that a radius of a receiving antenna
is larger, the spatial coherence radius becomes smaller relative to
a radius of the antenna and then the spatial coherence of received
waves decreases. Therefore, the larger a radius of a receiving antenna
becomes, the more PEP considering the spatial coherence of received
waves increases. After all, we conclude that the decrease in the
spatial coherence of received waves causes the increase in BER for
the downlink communication.



Progress In Electromagnetics Research C, Vol. 3, 2008 243

5. CONCLUSION

In conclusion, we find the following influences of atmospheric
turbulence on the GEO satellite communication in Ka-band on the
assumption that the spatial coherence of received waves decreases and
spot dancing only occurs.

(i) In the uplink communication, the decrease in the average intensity
due to spot dancing causes the increase in BER, but the spatial
coherence of received waves decreases little and there are little
influences of this spatial coherence on BER.

(ii) In the downlink communication, the decrease in the spatial
coherence of received waves by atmospheric turbulence causes the
increase in BER, but spot dancing influences little on BER.

(iii) It is enough to estimate BER derived from the average intensity
(PEI) when the spatial coherence radius is much larger than a
radius of a receiving antenna. But BER derived from the average
power (PEP) including with the influence of the spatial coherence
of received waves has to be considered when the spatial coherence
radius is not much larger than a radius of a receiving antenna.

Furthermore, we find that the decrease in DOC and the increase
in BER becomes much more in the Kolmogorov model than in the
Gaussian model; therefore, the effects of atmospheric turbulence is
more sensitive in the Kolmogorov model than the Gaussian model.

In this paper, we do not consider effects of scintillation of received
intensities. At the next stage, we will examine effects of both spot
dancing and scintillation on satellite communication. We estimate
BER in atmospheric turbulence by using the average intensity or the
average received power. In order to make a more actual analysis, we
have to consider the probability density function (PDF) about the bit
error of satellite communication. The introduction of PDF is a future
problem.
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APPENDIX A. APPROXIMATION OF EQUATION (22)

The approximation from (22) to (23) is shown as follows.
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Figure A1. Range of integration for z1 and z2, and the corresponding
range of integration for x and y.

We transform the integration of (22) with respect to z1 and z2

into the difference coordinate

x = z − z2 −
z1

2
(A1)

y = z1. (A2)

The transformation changes the region of the integration as shown in
Figure A1. Because the appreciable values of the function b0(x, y) exist
only for y within the correlation distance, shown by the dark shaded
region in Figure A1, it follows that the limits of integration on y can
be extended from 0 to ∞ without significant error. In addition, z2−n

2
in the integrand can be approximated by

z2−n
2 =

(
z − x− y

2

)2−n
	 (z − x)2−n, n = 0, 1, 2. (A3)

From the above approximations, (22) can be represented by

σ2
n =

1
2

∫ z

0
dz1

∫ z−z1

0
dz2z

2−n
2 b0

(
z − z2 −

z1

2
, z1

)

	 1
2

∫ z

0
dx

∫ ∞

0
dy(z − x)2−nb0(x, y), (A4)

and (23) is obtained by replacing x, y by z1, z2 in (A4)
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