Vol. 4
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-06-26
Transmission Line Analysis of Aperture-Coupled Reflectarrays
By
Progress In Electromagnetics Research C, Vol. 4, 1-12, 2008
Abstract
A fast analysis of aperture-coupled reflectarrays is presented in this work in terms of transmission line model. The circuital approach is adopted to derive the phase design curve as a function of the current flowing on the equivalent impedance of the single radiating element. Computational costs are drastically reduced with respect to standard full-wave methods. Numerical and experimental validations are discussed on slot-coupled reflectarray configurations working at different operating frequencies.
Citation
Francesca Venneri, Sandra Costanzo, and Giuseppe Di Massa, "Transmission Line Analysis of Aperture-Coupled Reflectarrays," Progress In Electromagnetics Research C, Vol. 4, 1-12, 2008.
doi:10.2528/PIERC08051605
References

1. Sayidmarie, K. and H. Bialkowski, "Phasing of a microstrip reflectarray using multi-dimensional scaling of its elements," Progress In Electromagnetics Research B, Vol. 2, 125-136, 2008.
doi:10.2528/PIERB07110402

2. Bialkowski, M. E. and K. H. Sayidmarie, "Bandwidth considerations for a microstrip reflectarray," Progress In Electromagnetics Research B, Vol. 3, 173-187, 2008.
doi:10.2528/PIERB07120405

3. Huang, J., "Microstrip reflectarray," Proc. of IEEE AP-S Int. Symp., 612-615, London (Ontario), Canada, 1991.

4. Pozar, D. M., S. D. Targonski, and H. D. Syrigos, "Design of millimeter wave microstrip reflectarrays," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 287-296, 1997.
doi:10.1109/8.560348

5. Encinar, J. A., "Design of two-layer printed reflectarrays using patches of variable size," IEEE Trans. Antennas Propag., Vol. 49, No. 10, 1403-1410, 2001.
doi:10.1109/8.954929

6. Encinar, J. A. and J. A. Zornoza, "Broadband design of three-layer printed reflectarrays," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1662-1664, 2003.
doi:10.1109/TAP.2003.813611

7. Huang, J., "A Ka-band microstrip reflectarray with elements having variable rotation angles," IEEE Trans. Antennas Propag., Vol. 46, No. 5, 650-656, 1998.
doi:10.1109/8.668907

8. Li, H., B.-Z. Wang, and W. Shao, "Novel broadband reflectarray antenna with compound-cross-loop elements for millimeter-wave application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1333-1340, 2007.
doi:10.1163/156939307783239528

9. Bialkowski, M. E. and H. J. Song, "Investigations into a power-combining structure using a reflectarray of dual feed aperture-coupled microstrip patch antennas," IEEE Trans. Antennas Propag., Vol. 50, No. 6, 841-849, 2002.
doi:10.1109/TAP.2002.1017666

10. Carrasco, E., B. Alfageme, and J. A. Encinar, "Design of a multilayer aperture-coupled cell used as phase shifter in reflectarrays," Proc. of Jina 2004, Nice, France, 2004.

11. Costanzo, S., F. Venneri, and G. Di Massa, "Bandwidth enhancement of aperture-coupled reflectarrays," IEE Electronics Letters, Vol. 42, No. 23, 1320-1321, 2006.
doi:10.1049/el:20062492

12. Huang, J., "Analysis of a microstrip reflectarray antenna for microspacecraft applications," TDA Progress Report, 153-173, 1995.

13. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, "An integral equation modelling of electromagnetic scattering from the surfaces of arbitrary resistance distribution," Progress In Electromagnetics Research B, Vol. 3, 157-172, 2008.
doi:10.2528/PIERB07121404

14. Du, P., B.-Z. Wang, H. Li, and G. Zheng, "Scattering analysis of large-scale periodic structures using the sub-entire domain basis function method and characteristic function method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2085-2094, 2007.
doi:10.1163/156939307783152957

15. Carpentieri, B., "Fast large RCS calculation using the boundary element method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1959-1968, 2007.
doi:10.1163/156939307783152768

16. Lu, W. B. and T. J. Cui, "Efficient method for full-wave analysis of large-scale finite-sized periodic structures," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2157-2168, 2007.
doi:10.1163/156939307783152812

17. Hassani, H. R. and M. Jahanbakht, "Method of moment analysis of finite phased array of aperture coupled circular microstrip patch antennas," Progress In Electromagnetics Research B, Vol. 4, 197-210, 2008.
doi:10.2528/PIERB08010602

18. MIttra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

19. Huang, E. X. and A. K. Fung, "An application of sampling theorem to moment method simulation in surface scattering," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 531-546, 2006.
doi:10.1163/156939306776117063

20. Venneri, F., G. Angiulli, and G. Di Massa, "Design of microstrip reflectarray using data from isolated patch," Microwave and Optical Technology Letters, Vol. 34, No. 6, 411-414, 2002.
doi:10.1002/mop.10479

21. Zheng, J. H., Y. Liu, and S.-X. Gong, "Aperture coupled microstrip antenna with low RCS," Progress In Electromagnetics Research Letters, Vol. 3, 61-68, 2008.
doi:10.2528/PIERL08013102

22. Venneri, F., S. Costanzo, G. Di Massa, and G. Amendola, "Aperture-coupled reflectarrays with enhanced bandwidth features," Journal of Electromagnetic Waves and Applications, Vol. 22, 1527-1537, 2008.
doi:10.1163/156939308786390247

23. Pue, H. and A. Van de Capelle, "Accurate transmission line model for the rectangular microstrip antenna," IEE Proc. H, Vol. 131, No. 6, 334-340, 1984.

24. Kim, J. P. and W. S. Park, "Analysis and network modeling of an aperture-coupled microstrip patch antenna," IEEE Trans. Antennas Propag., Vol. 49, No. 6, 849-854, 2001.
doi:10.1109/8.931141

25. Kim, J. P. and W. S. Park, "An improved network modeling of slot-coupled microstrip lines," IEEE Trans. Microwave Theory and Techniques, Vol. 46, No. 10, 1484-1491, 1998.
doi:10.1109/22.721151

26. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slot Lines, Artech House, 1996.

27. Svacina, J., "Dispersion characteristics of multilayered slotlines — A simple approach," IEEE Trans. Microwave Theory and Techniques, Vol. 47, No. 9, 1826-1829, 1999.
doi:10.1109/22.788518

28. Pozar, D. M., "A reciprocity method of analysis for printed slot and slot-coupled microstrip antenna," IEEE Trans. Antennas Propag., Vol. 34, No. 12, 1439-1446, 1986.
doi:10.1109/TAP.1986.1143785

29. Itoh, T., "Spectral domain immittance approach for dispersion characteristics of generalized printed transmission lines," IEEE Trans. Microwave Theory and Techniques, Vol. 28, No. 7, 733-736, 1980.
doi:10.1109/TMTT.1980.1130158

30. Kobayashi, M., "Longitudinal and transverse current distributions on microstriplines and their closed-form expression," IEEE Trans. Microwave Theory and Techniques, Vol. 33, No. 9, 784-788, 1985.
doi:10.1109/TMTT.1985.1133127

31. Venneri, F., G. Angiulli, and G. Di Massa, "Experimental evaluation of the phase of the field scattered by microstrip patches for reflectarray design," Microwave and Optical Technology Letters, Vol. 34, No. 3, 163-164, 2002.
doi:10.1002/mop.10403