Vol. 4
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-06-26
Analysis of Planar Multilayer Structures at Oblique Incidence Using an Equivalent Bcitl Model
By
Progress In Electromagnetics Research C, Vol. 4, 13-24, 2008
Abstract
Planar multilayer structures have found several applications in electromagnetics. In this paper, an equivalent model based on the bi-characteristic-impedance transmission line (BCITL) is employed to model planar multilayer structures effectively for both lossless and lossy cases. It is found that the equivalent BCITL model provides identical results, for both perpendicular and parallel polarizations, as those obtained from the propagation matrix approach.
Citation
Danai Torrungrueng, and Suthasinee Lamultree, "Analysis of Planar Multilayer Structures at Oblique Incidence Using an Equivalent Bcitl Model," Progress In Electromagnetics Research C, Vol. 4, 13-24, 2008.
doi:10.2528/PIERC08050702
References

1. Qing, A. and C. K. Lee, "An improved model for full wave analysis of multilayered frequency selective surface with gridded square element," Progress In Electromagnetics Research, Vol. 30, 285-303, 2001.
doi:10.2528/PIER00041803

2. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101

3. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using Taylor's series expansion," IEEE Trans. Antennas and Propagation, Vol. 54, No. 1, 130-135, Jan. 2006.
doi:10.1109/TAP.2005.861577

4. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using finite difference method," Progress In Electromagnetics Research, Vol. 59, 187-198, 2006.

5. Rothwell, E. J., "Natural-mode representation for the field reflected by an inhomogeneous conductor-backed material layer –TE case," Progress In Electromagnetics Research, Vol. 63, 1-20, 2006.
doi:10.2528/PIER06051801

6. Kedar, A. and U. K. Revankar, "Parametric study of flat sandwich multilayer Radome," Progress In Electromagnetics Research, Vol. 66, 253-265, 2006.
doi:10.2528/PIER06111202

7. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimentional generalized multilayer fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.
doi:10.2528/PIER05091701

8. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using equivalent sources method," Progress In Electromagnetics Research, Vol. 72, 61-73, 2007.
doi:10.2528/PIER07030802

9. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using the method of moments," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1925-1937, 2007.
doi:10.1163/156939307783152984

10. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using fourier series expansion," IEEE Trans. Antennas and Propagation, Vol. 55, No. 2, 489-493, Feb. 2007.
doi:10.1109/TAP.2006.889923

11. Suyama, T., Y. Okuno, A. Matsushima, and M. Ohtsu, "A numerical analysis of stop band characteristics by multilayered dielectric gratings with sinusoidal profile," Progress In Electromagnetics Research B, Vol. 2, 83-102, 2008.
doi:10.2528/PIERB07110301

12. Yildiz, C. and M. Turkmen, "Quasi-static models based on artificial neural neworks for calculating the characteristic parameters of multilayer cylindrical coplanar waveguide and strip line," Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008.
doi:10.2528/PIERB07112806

13. Oraizi, H. and A. Abdolali, "Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials," Progress In Electromagnetics Research B, Vol. 3, 227-253, 2008.
doi:10.2528/PIERB07120803

14. Kong, J. A., Electromagnetic Wave Theory, 2nd edition, 1990.

15. Wait, J. R., Electromagnetic Wave Theory, John Wiley & Son, 1989.

16. Oraizi, H. and M. Afsahi, "Analysis of planer dielectric multilayers as FSS by transmission line transfer matrix method (TLTMM)," Progress In Electromagnetics Research, Vol. 74, 217-240, 2007.
doi:10.2528/PIER07042401

17. Worasawate, D. and D. Torrungrueng, "Analysis of a multi-section impedance transformer using an equivalent CCITL model," Proc. of the 2006 ECTI-CON, 111-114, Ubon Ratchatani, Thailand, May 10–13, 2006.

18. Torrungrueng, D., C. Thimaporn, and N. Chamnandechakun, "An application of the T-chart for solving problems associated with terminated finite lossless periodic structures," Microwave and Optical Tech. Lett., Vol. 47, No. 6, 594-597, December 2005.
doi:10.1002/mop.21239

19. Torrungrueng, D., P. Y. Chou, and M. Krairiksh, "A graphical tool for analysis and design of bi-characteristic-impedance transmission lines," Microwave and Optical Tech. Lett., Vol. 49, No. 10, 2368-2372, October 2007.
doi:10.1002/mop.22801

20. Pozar, D. M., Microwave Engineering, 3rd edition, 2005.

21. Torrungrueng, D. and C. Thimaporn, "A generalized ZY Smith chart for solving nonreciprocal uniform transmission-line problems," Microwave and Optical Tech. Lett., Vol. 40, No. 1, 57-61, January 2004.
doi:10.1002/mop.11284