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Abstract—Planar multilayer structures have found several applica-
tions in electromagnetics. In this paper, an equivalent model based on
the bi-characteristic-impedance transmission line (BCITL) is employed
to model planar multilayer structures effectively for both lossless and
lossy cases. It is found that the equivalent BCITL model provides
identical results, for both perpendicular and parallel polarizations, as
those obtained from the propagation matrix approach.

1. INTRODUCTION

Multilayer structures have found several applications in electromagnet-
ics; e.g., in the areas of optics, remote sensing and geophysics [1–13],
especially for planar multilayer structures. Traditionally, the propa-
gation matrix approach (PMA) is employed to solve problems related
to planar multilayer structures rigorously [14]. Alternatively, it is well
known that these problems can also be solved readily by modeling
these structures using multi-section transmission lines with appropri-
ate characteristic impedances and propagation constants, where each
transmission line possesses the same length as of the corresponding
layer [15, 16].

Recently, it has been shown that lossless multi-section transmis-
sion lines can be analyzed successfully using an equivalent model based
on the conjugately characteristic-impedance transmission line (CC-
ITL) [17]. By definition, CCITLs are lossless, and possess conjugate
characteristic impedances of wave propagating in opposite directions.
CCITLs can be practically implemented using finite lossless periodi-
cally loaded transmission lines operated in passbands [18]. However,
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CCITLs cannot be used to model lossy multi-section transmission lines.
Thus, one needs to resort to more general model for these cases.

In this paper, an equivalent model based on the bi-characteristic-
impedance transmission line (BCITL) is employed to model planar
multilayer structures effectively for both lossless and lossy cases.
In general, BCITLs are lossy, and possess different characteristic
impedances Z±

0b of wave propagating in opposite directions. Note that
BCITLs can be practically implemented using finite lossy periodically
loaded transmission lines, and a graphical tool, known as a generalized
T-chart, has been recently developed for solving problems associated
with BCITLs [19]. It should be pointed out that CCITLs are a special
case of BCITLs when associated losses of BCITLs disappear and the
passband operation is assumed.

This paper presents the propagation matrix approach in Section 2.
Section 3 presents an equivalent model based on BCITLs. Then,
numerical results of both approaches are compared in Section 4.
Finally, conclusions are provided in Section 5.

2. PROPAGATION MATRIX APPROACH

In this section, the propagation matrix approach is discussed for
both perpendicular and parallel polarizations. Fig. 1 shows a planar

Figure 1. Oblique incidence on a planar multilayer structure.
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multilayer structure terminated in a surface impedance of Zs at z = zN

and illuminated by a plane wave of oblique incidence of the known
amplitude B0 at the known incident angle θ0. Each layer of length
li has the permeability µi, permittivity εi, intrinsic impedance ηi and
wavenumber ki, where i = 0, . . . , N . At each layer interface, Bi and
Ai correspond to unknown amplitudes (B0 is known) of incident and
reflected waves respectively, and θi is the unknown incident angle (θ0 is
known), which can be determined from the Snell’s law of refraction [14].
These wave amplitudes are associated with electric and magnetic fields
for perpendicular and parallel polarizations, respectively. It should be
pointed out that µ0 and ε0 are not necessarily the free space parameters
in this notation.

Using the PMA [14], it is found that the wave amplitudes in Layers
i and i + 1 are related by

[
Ai

Bi

]
=[Li]

[
Ai+1

Bi+1

]
=

1
2

[
(1+ri)ejkz, diff zi (1−ri)e−jkz, sumzi

(1−ri)ejkz, sumzi (1+ri)e−jkz, diff zi

][
Ai+1

Bi+1

]
, (1)

where

kz, diff = kz, i+1 − kz, i, (2)
kz, sum = kz, i+1 + kz, i, (3)

kz, i = ki cos θi, (4)

ri =




(
kz, i+1

kz, i

) (
µi

µi+1

)
, for perpendicular polarization

(
kz, i+1

kz, i

) (
εi

εi+1

)
, for parallel polarization.

. (5)

The total matrix [L] relating the wave amplitudes in Layers 0 and
N is given in terms of the multiplication of each matrix [Li], where
i = 0, 1, 2, . . . , N − 1, as follows:

[L] ∆=
[
L11 L12

L21 L22

]
= [L0][L1][L2] . . . [LN−2][LN−1]. (6)

Once the matrix [L] is computed by using Eqs. (1) and (6), the total
input reflection coefficient Γ0, defined at the interface between Layers
0 and 1, can be determined in terms of each element of [L] as

Γ0
∆=

A0

B0
=

L11RNe−j2kz, NzN + L12

L21RNe−j2kz, NzN + L22
, (7)
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where

RN =




kz, NZs − ωµN

kz, NZs + ωµN
, for perpendicular polarization

kz, NYs − ωεN

kz, NYs + ωεN
, for parallel polarization

, (8)

and Ys = Z−1
s is the surface admittance at z = zN . In the next

section, the equivalent model based on BCITLs is developed for planar
multilayer structures.

3. EQUIVALENT MODEL BASED ON BCITLS

As pointed out earlier, planar multilayer structures can be analyzed
by modeling these structures using multi-section transmission lines.
Fig. 2(a) illustrates the equivalent multi-section model of Fig. 1, where
the propagation constant βi and the characteristic impedance Zi of
each transmission line in the multi-section model are defined as

βi = kz, i, (9)

Zi =
{

ηi sec θi, for perpendicular polarization
ηi cos θi, for parallel polarization . (10)

The multi-section model can be analyzed effectively using the
BCITL model shown in Fig. 2(b). In [17] and [20], the characteristic
impedances Z±

0b and the propagation constant βb can be determined
from the total transmission (ABCD) matrix of the cascading N -section
transmission lines of the total length lT in Fig. 2(a) as

Z±
0b =

∓2B

(A − D) ∓ j
√

4 − (A + D)2
(11)

cos (βblT ) =
A + D

2
. (12)

Note that the formula of the ABCD matrix of each N -section
transmission line is provided in [20].

Using the theory of two-port network [20], it can be shown
rigorously that the two transmission line models in Fig. 2 are
equivalent; i.e., their total transmission matrices are identical. It
should be pointed out that the BCITL model is equivalent to the
multi-section model at the input and output terminals only; i.e., at
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Figure 2. Transmission line models: (a) Multi-section model and (b)
BCITL model.

z = z0 and z = zN respectively as shown in Fig. 2. This is due to
the fact that the multi-section transmission line in Fig. 2(a) is globally
viewed as a two-port network in constructing the BCITL model.

The total input reflection coefficient Γin, b in Fig. 2(b) can be
determined from the input impedance Zin, b as

Γin, b = ±
[
Zin, b − Z0

Zin, b + Z0

]
, (13)

where

Zin, b = Z+
0bZ

−
0b

[
1 + ΓL, be

−j2βblT

Z−
0b − Z+

0bΓL, be−j2βblT

]
(14)

ΓL, b =
ZsZ

−
0b − Z+

0bZ
−
0b

ZsZ
+
0b + Z+

0bZ
−
0b

. (15)

The derivation of Zin,b and ΓL, b can be found in [21]. Note that the
load reflection coefficient ΓL, b associated with the BCITL is defined
at z = zN . In Eq. (13), the plus and minus signs correspond to
the perpendicular and parallel polarizations, respectively. The minus
sign comes from the fact that the total input reflection coefficient is
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associated with the current, instead of the voltage, for the parallel
polarization. In the next section, numerical results of both approaches
are compared.

4. NUMERICAL RESULTS

For illustration of the validity of the equivalent BCITL model, consider
a lossy planar three-layer structure (N = 3) illuminated by an
oblique plane wave at 18 GHz and terminated in a surface impedance
of Zs = 50.0 Ω. Parameters of each layer are given as follows:
µr, 0 = µr, 1 = µr, 2 = µr, 3 = 1.0, εr, 0 = 1.0, εr, 1 = 5.0 − j0.01,
εr, 2 = 10.0 − j0.05, εr, 3 = 14.0 − j0.01, z0 = 0.0 m, z1 = 0.10 m,
z2 = 0.15 m and z3 = 0.30 m.

For the perpendicular polarization, Figs. 3 and 4 illustrate the
plots of the magnitude and phase of the characteristic impedances Z±

0b
computed by using Eq. (11) versus the incident angle θ0, respectively.
Note that Z+

0b and Z−
0b are generally complex and different. These

results are consistent with the fact that the structure of interest is
lossy. In addition, Z±

0b vary considerably with θ0. Fig. 5 shows the
plot of the real and imaginary parts of the propagation constant βb

versus θ0. Note that βb is also complex in general due to the lossy
structure of interest, and it varies noticeably with θ0. Fig. 6 shows the
plot of the magnitude of the total input reflection coefficient versus θ0

for both PMA (Γ0) and equivalent BCITL model (Γin, b). It is obvious
that numerical results obtained from both approaches are identical for

Figure 3. Plot of the magnitude of the characteristic impedances Z±
0b

versus θ0 for the perpendicular polarization.



Progress In Electromagnetics Research C, Vol. 4, 2008 19

Figure 4. Plot of the phase of the characteristic impedances Z±
0b

versus θ0 for the perpendicular polarization.

Figure 5. Plot of the real and imaginary parts of the propagation
constant βb versus θ0 for the perpendicular polarization.

all θ0 of interest.
For the parallel polarization, Figs. 7 and 8 show the plots of the

magnitude and phase of the characteristic impedances Z±
0b versus the

incident angle θ0, respectively. As in the case of the perpendicular
polarization, Z+

0b and Z−
0b are generally complex and different, and they

vary considerably with θ0. Note that Z±
0b for perpendicular and parallel

polarizations are generally different as expected. Fig. 9 illustrates the
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Figure 6. Plot of the magnitude of the total input reflection coefficient
versus θ0 for the perpendicular polarization.

Figure 7. Plot of the magnitude of the characteristic impedances Z±
0b

versus θ0 for the parallel polarization.

plot of the real and imaginary parts of the propagation constant βb

versus θ0. As in the case of the perpendicular polarization, βb is also
complex, and it varies noticeably with θ0. It should be pointed out
that βb in Figs. 5 and 9 are different although they look very similar.
Fig. 10 shows the plot of the magnitude of the total input reflection
coefficient versus θ0 for both PMA (Γ0) and equivalent BCITL model
(Γin, b). Note that numerical results obtained from both approaches
are identical for all θ0 of interest.
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Figure 8. Plot of the phase of the characteristic impedances Z±
0b

versus θ0 for the parallel polarization.

Figure 9. Plot of the real and imaginary parts of the propagation
constant βb versus θ0 for the parallel polarization.
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Figure 10. Plot of the magnitude of the total input reflection
coefficient versus θ0 for the parallel polarization.

5. CONCLUSIONS

Planar multilayer structures at oblique incidence can be analyzed
successfully using an equivalent BCITL model for both perpendicular
and parallel polarizations. The variations of BCITL parameters, Z±

0b
and βb, with the incident angle θ0 are studied as well. It is found that
these parameters are generally complex and strongly dependent on θ0

for both polarizations. In addition, the magnitude of the total input
reflection coefficient obtained from both PMA and equivalent BCITL
model are identical indeed. Finally, the equivalent BCITL model is
conceptually simple and effective, and may offer better physical insight
into more complicated multilayer structures.
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