Vol. 1
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-03-19
A New Linear Space-Time Block Code for Wireless Channels with Correlated Fading Coefficients
By
Progress In Electromagnetics Research C, Vol. 1, 211-228, 2008
Abstract
In the recent years, extensive studies have been done to design space-time codes appropriate for communications over fading channels in multiple input-multiple output (MIMO)systems. Most of these designs have been based upon the assumption that the channel fading coefficients are uncorrelated hence independent jointly Gaussian random variables. Naturally the best strategy in such situations that the elements of the channel matrix are independent is to employ diversity techniques to combat the adverse effects of these fading media and thus the most famous space-time codes, i.e., orthogonal and trellis codes have been designed with an eye to realizing the maximum attainable diversity order in a MIMO system. In this paper, we will remove this almost ever-present yet practically difficult to meet condition and shall introduce a new linear space-time block code that due to having some inherent redundancy as well as diversity is wellsuited to correlated fading channels. We will discuss the properties of the proposed code, derive its maximum likelihood (ML) decoder and provide simulation results which show its superiority to the highly used orthogonal space-time block codes in a wide range of signal to noise ratios in correlated fading channels.
Citation
Khashayar Nobandegani, and Paeiz Azmi, "A New Linear Space-Time Block Code for Wireless Channels with Correlated Fading Coefficients," Progress In Electromagnetics Research C, Vol. 1, 211-228, 2008.
doi:10.2528/PIERC08021604
References

1. Tarokh, V., N. Seshadri, and A. R. Calderbank, "Space-time codes for high data rate wireless communication: Performance analysis and code construction ," IEEE Transactions on Information Theory, Vol. 44, 744-765, Mar. 1998.
doi:10.1109/18.661517

2. Alamouti, S. M., "A simple transmitter diversity scheme for wireless communications," IEEE Journal of Selected Areas in Communications, Vol. 16, 1451-1458, Oct. 1998.
doi:10.1109/49.730453

3. Tarokh, V., H. Jafarkhani, and A. R. Calderbank, "Space-time block codes from orthogonal designs," IEEE Transactions on Information Theory, Vol. 45, 1456-1467, Jul. 1999.
doi:10.1109/18.771146

4. Foschini, Jr., G. J. and M. J. Gans, "On limits of wireless communication in a fading environment when using multiple antennas," Wireless Personal Communication, Vol. 6, No. 2, 311-335, Mar. 1998.
doi:10.1023/A:1008889222784

5. Hammons, Jr., A. R. and H. El-Gamal, "On the theory of space-time codes for PSK modulation," IEEE Transactions on Information Theory, 524-542, Mar. 2000.
doi:10.1109/18.825816

6. Bolcskei, H. and A. J. Paulraj, "Performance of space-time codes in the presence of spatial fading correlation," Thirty-fourth Asilomar Conference on Signals, Systems and Computers, Vol. 1, 687-693, Nov. 2000.

7. Ivrlac, M. T., W. Utschick, and J. A. Nossek, "Fading correlations in wireless MIMO communication systems," IEEE Journal of Selected Areas in Communications, Vol. 21, No. 5, 819-828, Jun. 2003.
doi:10.1109/JSAC.2003.810348

8. Chiani, M., M. Z. Win, and A. Zanella, "On the capacity of spatially correlated MIMO rayleigh-fading channels," IEEE Transactions on Information Theory, Vol. 49, No. 10, 2363-2371, Oct. 2003.
doi:10.1109/TIT.2003.817437

9. Smith, P. J., S. Roy, and M. Shafi, "Capacity of MIMO systems with semicorrelated flat fading," IEEE Transactions on Information Theory, Vol. 49, No. 10, 2781-2788, Oct. 2003.
doi:10.1109/TIT.2003.817472

10. Hong, Z., K. Liu, R. W. Heath, and A. M. Sayeed, "Spatial multiplexing in correlated fading via the virtual channel representation," IEEE Journal of Selected Areas in Communications, Vol. 21, No. 5, 856-866, June 2003.
doi:10.1109/JSAC.2003.810361

11. Abouda, A. A. and S. G. Haggman, "Effect of mutual coupling on capacity of MIMO wireless channels in high SNR scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
doi:10.2528/PIER06072803

12. Abouda, A. A., H. M. El-Sallabi, and S. G. Haggman, "Effect of antenna array geometry and ula azimuthal orientation on MIMO channel properties in urban city street grid," Progress In Electromagnetics Research, Vol. 64, 257-278, 2006.
doi:10.2528/PIER06050801

13. Hedayat, A., H. Shah, and A. Nosratinia, "Analysis of spacetime coding in correlated fading channels," IEEE Transactions on Wireless Communications, Vol. 4, No. 6, 2882-2891, Nov. 2005.
doi:10.1109/TWC.2005.858338

14. Horn, R. A. and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1988.

15. Lin, S. and D. J. Costello Jr., Error Control Coding: Fundamentals and Applications, Prentice Hall, 1983.

16. Li, H.-J. and C.-H. Yu, "MIMO channel capacity for various polarization combinations," J. of Electromagn. Waves and Appl., Vol. 18, No. 3, 301-320, 2004.
doi:10.1163/156939304323085685

17. Chen, Y. B., Y. C. Jiao, F. S. Zhang, and H. W. Gao, "A novel small CPW-fed T-shaped antenna for MIMO system applications," J. of Electromagn. Waves and Appl., Vol. 20, No. 14, 2027-2036, 2006.
doi:10.1163/156939306779322774

18. Geyi, W., "New magnetic field integral equation for antenna system," Progress In Electromagnetic Research, Vol. 63, 153-170, 2006.

19. Geyi, W., "Multi-antenna information theory," Progress In Electromagnetics Research, Vol. 75, 11-50, 2007.
doi:10.2528/PIER07052203

20. Usman, M., R. A. Abd-Alhameed, and P. S. Excell, "Design considerations of MIMO antennas for mobile phones," PIERS Online, Vol. 4, No. 1, 121-125, 2008.

21. Wang, F., Y. Xiong, and X. Yang, "Approximate ML detection based on MMSE for MIMO systems," PIERS Online, Vol. 3, No. 4, 475-480, 2007.
doi:10.2529/PIERS070205100143

22. Geyi, W., S. Ali, and D.Wang, "Handset antenna design: Practice and theory," Progress In Electromagnetics Research, Vol. 80, 123-160, 2008.
doi:10.2528/PIER07111302

23. Wang, Y. J. and C. K. Lee, "Design of dual-frequency microstrip patch antennas and application for Imt-2000 mobile handsets," Progress In Electromagnetics Research, Vol. 36, 265-278, 2002.
doi:10.2528/PIER02022102

24. Wang, Y. J. and C. K. Lee, "Compact and broadband microstrip patch antenna for the 3G IMT-2000 handsets applying styrofoam and shorting-posts," Progress In Electromagnetics Research, Vol. 47, 75-85, 2004.
doi:10.2528/PIER03100901