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Abstract—In the recent years, extensive studies have been done to
design space-time codes appropriate for communications over fading
channels in multiple input-multiple output (MIMO) systems. Most of
these designs have been based upon the assumption that the channel
fading coefficients are uncorrelated hence independent jointly Gaussian
random variables. Naturally the best strategy in such situations that
the elements of the channel matrix are independent is to employ
diversity techniques to combat the adverse effects of these fading
media and thus the most famous space-time codes, i.e., orthogonal
and trellis codes have been designed with an eye to realizing the
maximum attainable diversity order in a MIMO system. In this paper,
we will remove this almost ever-present yet practically difficult to meet
condition and shall introduce a new linear space-time block code that
due to having some inherent redundancy as well as diversity is well-
suited to correlated fading channels. We will discuss the properties of
the proposed code, derive its maximum likelihood (ML) decoder and
provide simulation results which show its superiority to the highly used
orthogonal space-time block codes in a wide range of signal to noise
ratios in correlated fading channels.

1. INTRODUCTION

Man’s insatiable appetite for achieving higher data rates and increased
channel capacities at no bandwidth expense has led to the emergence
of MIMO systems, which in turn have given birth to the topic of space-
time coding to ensure reliable wireless communication over the fading
multipath channel encountered by these systems. Tarokh, Seshadri,
and Calderbank [1] were the first researchers to derive performance
criteria for designing such codes. They introduced space-time trellis
codes, an extension of the conventional convolutional codes which had
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an encoding/decoding complexity comparable to that of trellis codes
employed in practice over Gaussian channels and were shown to have
excellent performance; providing the best tradeoff between data rate,
diversity advantage, and coding complexity. Next, Alamouti [2] came
up with a bright idea and put forward a linear block code for a MIMO
system with two transmit and an optional number of receive antennas
which could also achieve the maximum diversity order and due to its
simple orthogonal structure, had a simple ML decoding that required
only linear processing at the receiver. Despite its inferiority to space-
time trellis codes in performance, its linear decoding characteristic and
ease of implementation placed it at the focal point of attention. This
fundamental work was shortly consummated by Tarokh, Jafarkhani,
and Calderbank [3] who elegantly generalized the topic of orthogonal
space-time block codes for both real and complex constellations and
for any number of transmit antennas.

A keystone condition assumed by the majority of space-time
code designers is that the channel fading coefficients are uncorrelated
(for instance, see [3–5]), however, in many practical situations; this
assumption may not be well-founded. Meeting it calls for large
distances between the antennas at both the transmitting and receiving
ends. Realization of this very condition is especially difficult in mobile
communications where the hand-held user’s units are expected to be
small and economical.

Therefore, due to the above and a whole host of other constraints
such as angle spread and the lack of rich scattering that may come
to the fore in practice, special attention must be paid to the design
of space-time codes in the case that the channel fading coefficients are
correlated. The effect of such correlations on the system performance is
studied in [6]. In [6], Bolcksei quantified the system’s diversity order as
a function of the ranks of the transmit and receive correlation matrices.
The recent work on correlated fading includes [7–11]. In [7], Ivrlac
et al. study the effects of fading correlations and transmitter channel
knowledge on the capacity and cutoff rate for MIMO systems, and
in [8], Chiani et al. derive closed form expression for the characteristic
functions for MIMO system capacity for the correlated fading case.
Smith et al. also study the capacity of MIMO systems, but they
focus on semi-correlated flat fading [9]. Hong et al. investigate the
design and performance of spatial multiplexing for MIMO correlated
fading channels in [10]. In [11, 12], Abouda et al. study the effect of
coupling on capacity of MIMO wireless channels in High SNR scenario.
Hedayat et al. present a comprehensive analysis of MIMO systems
under correlated fading and use their derived expressions for pairwise-
error-probability to calculate union bounds on the performance of a
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broad spectrum of space-time codes in different fading channels [13].
Needless to say that the higher the correlation between these

coefficients, the greater the resemblance between MIMO and single
input-single output (SISO) systems. In such circumstances, it is pretty
obvious that depending solely on diversity and repetition techniques
as orthogonal space-time block codes do is not the best adoptable
strategy. Instead we believe that increasing the coding gain through
adding some redundancy while maintaining a reasonable amount of
diversity can improve the performance of linear space-time block codes
in such likely to arise situations. Based on this reasoning, we propose
a new linear space-time block code that compared with its orthogonal
counterpart attains a smaller diversity order, yet a larger coding gain
and as the simulation results verify, outperforms orthogonal space-time
block codes in a rather wide range of signal to noise ratios in correlated
fading channels.

The outline of the paper is as follows. In Section 2, we describe
a mathematical model for the MIMO communication system. In
Section 3, a new linear space-time code will be introduced. Section 4
deals with the properties of the proposed code such as its diversity
gain, coding gain, etc. In Section 5, the ML decoder for the new code
will be found. In Section 6, the performance of the proposed code is
compared to that of its orthogonal counterpart via simulations. Finally
Section 7 is dedicated to concluding remarks.

Notation: Bold uppercase letters denote matrices. IM denotes
the identity matrix of size M . (.)T , (.)H , and (.)∗ denote transpose,
Hermitian transpose, and complex conjugate respectively. For a matrix
X, Xi, j denotes its (i, j)th entry, and X(L) denotes the matrix formed
by selecting the first L columns of X. The vectorizing operator vec(X)
stacks the columns of the matrix X in a column vector. For a complex
number b, |b| represents its absolute value.

2. THE MIMO CHANNEL MODEL

In this section, we describe a mathematical model for the wireless
MIMO communication system subject to quasi-static and flat fading.

Consider a wireless communication system where the base station
and the receiver have n and m antennas respectively. At each time slot
t, signals ci

t, i = 1, 2, . . . , n are transmitted simultaneously from the
n transmit antennas. The fading coefficient Hij is the path gain from
transmit antenna j to receive antenna i. As mentioned earlier, these
gains are modeled as correlated complex Gaussian random variables
with unit variance and constitute an m × n channel matrix H. The
wireless channel is assumed to be quasi-static so that the channel
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matrix remains unchanged over a frame of length L, i.e., L consecutive
time slots and varies from one frame to another.

At time t the signal received at antenna j is given by

rj
t =

n∑
i=1

Hjic
i
t + ηj

t (1)

where ηj
t are independent zero-mean complex Gaussian random

variables with variance 1
2SNR per dimension. The average energy of

the symbols transmitted from each antenna is normalized to be 1
n .

3. THE NEW LINEAR SPACE-TIME BLOCK CODE

In this section, we shall introduce a new linear space-time block code
that borrows ideas from orthogonal designs [3] and Reed-Solomon
codes. It is assumed that transmission at the baseband employs a
signal constellation A with 2b elements. At each time slot, Lb bits
arrive at the encoder and select constellation signals s1, s2, . . . , sL

which are then arranged into a matrix OT (s1, s2, . . . , sL) where O
denotes an L×L orthogonal design introduced in [3], and L < n. Next
we will add (n − L) rows of zeros to OT (s1, s2, . . . , sL) to obtain an
n × L matrix C. Finally, the matrix C undergoes a two-dimensional
unitary transform to make an n × L matrix Θ. At each time slot
t = 1, 2, . . . , L, the entries Θit, i = 1, 2, . . . , n are transmitted
simultaneously from transmit antennas 1, 2, . . . , n using a PAM or
a QPSK constellation depending on the real or complex nature of the
matrix Θ. Since we use nL symbols to transmit Lb bits, the bit/symbol
rate of this coding scheme is b

n . For further clarification, the encoding
procedure is described below for n = 4 and L = 2.

1 — 2b bits arrive at the encoder, selecting constellation signals
s1 and s2.

2 — These signals are arranged in an orthogonal matrix as follows:

OT (s1, s2) =
[
s1 −s∗2
s2 s∗1

]

3 — Two rows of zeros are added to OT (s1, s2) to make the 4×2
matrix

C =




s1 −s∗2
s2 s∗1
0 0
0 0



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4 — As the final step, a two-dimensional unitary transform will be
applied to the matrix C and the columns of the thus obtained matrix
will be transmitted via the MIMO system using a PAM or a QPSK
constellation.

Necessary though it is not, we usually let L ≈ n/2 to maintain
a good balance between the amount of repetition, i.e., diversity and
redundancy, i.e., coding.

4. PROPERTIES OF THE NEW SPACE-TIME CODE

In [1], two performance bench marks were derived for space-time codes,
namely the rank criterion and the determinant criterion which are
briefly restated here.

Given perfect channel state information at the receiver, we may
approximate the probability that the receiver decides erroneously in
favour of a signal e = e1

1e
2
1 . . . en

1e1
2e

2
2 . . . en

2 . . . e1
Le2

L . . . en
L assuming that

c = c1
1c

2
1 . . . cn

1c1
2c

2
2 . . . cn

2 . . . c1
Lc2

L . . . cn
L was transmitted as follows [1]:

P (c → e|H) ≤ exp
(
−d2 (c, e) / (4N0)

)
(2)

where H is the channel matrix, N0/2 is the variance of noise per
dimension, and

d2 (c, e) =
m∑

j=1

L∑
t=1

∣∣∣∣∣
n∑

i=1

Hji

(
ci
t − ei

t

)∣∣∣∣∣
2

. (3)

Further calculations in [1] lead to the following design criteria.
• The Rank Criterion: In order to achieve the maximum diversity mn,
the following error matrix has to be full rank for every pair of distinct
codewords c and e.

B (c, e) =




e1
1 − c1

1 e1
2 − c1

2 . . . e1
L − c1

L

e2
1 − c2

1 e2
2 − c2

2 . . . e2
L − c2

L

· · . . . ·
· · . . . ·
· · . . . ·

en
1 − cn

1 en
2 − cn

2 . . . en
L − cn

L




(4)

If B (c, e) has minimum rank r over the set of pairs of distinct
codewords, then a diversity gain of rm is obtained. This criterion is
valid for both Rayleigh and Rician channels.
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• The Determinant Criterion: Suppose that a diversity order of rm is
to be reached. The minimum of rth roots of the sum of determinants
of all r × r principal cofactors of A (c, e) = B (c, e)BH (c, e) taken
over all pairs of distinct codewords c and e determines the coding gain
where r is the rank of B (c, e). Indicating the r nonzero eigenvalues
of A (c, e) by {λi}n

i=1, the coding gain can be equivalently written as
(λ1λ2 . . . λr)

1/r.
In the remaining of this section, we discuss the properties of the

proposed space-time code.

• The columns of the matrix C introduced in Section 3 form an
orthogonal set of vectors.

Proof: This property is the immediate result of the orthogonality
of OT (s1, s2, . . . , sL) which remains unaffected by the zero padding
that makes the matrix C out of it.
• The rows of the matrix C form an orthogonal set of vectors.

Proof: Similar to that of the first property.

• CHC =

(
L∑

i=1

|si|2
)

IL.

Proof: Let D = CHC. We can write:

Dij =
n∑

k=1

C∗
kiCkj . (5)

Due to the first property of the new code, the right side of the
recent equality is zero when i �= j. In other words, only the diagonal
elements of D are nonzero and we have:

Dii =
n∑

k=1

|Cki|2 =
L∑

k=1

|Cki|2 =
L∑

k=1

|sk|2 (6)

It can be easily verified that CCH is an n×n matrix, the elements
of which are all zero except the first L diagonal ones that are given by
L∑

k=1

|sk|2.
Before proceeding further, we restate a definition from linear

algebra. Let x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) be two
complex vectors. The inner product of x and y is given by [14]

x · y =
k∑

i=1

xiy
∗
i
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• The columns of the matrix Θ form an orthogonal set of vectors.
Proof: We know that the matrix Θ is obtained by applying a

two-dimensional unitary transform to C. Therefore we can write:

Θ = FCG (7)

where Fn×n and GL×L are unitary matrices. Note that Θi = FCGi

and Θj = FCGj where Θi represents the ith column of Θ and so on.
We have:

Θj · Θi = ΘH
i Θj = GH

i CHFHFCGj = GH
i CHInCGj

= GH
i CHCGj =

(
L∑

k=1

|sk|2
)

GH
i Gj = 0 (8)

Corollary : The diversity gain of the new coding scheme is Lm.
Proof: We want to show that if B = Θ − Θ′, then rank(B) = L

for every distinct pair of codewords Θ and Θ′. Note that B =
F (C − C′)G where it is assumed that Θ and Θ′ are obtained by
applying the unitary transform given in (7) to C and C′. We observe
that:

Bj · Bi=BH
i Bj = GH

i

(
C − C′)H FHF

(
C − C′)Gj

=GH
i

(
C−C′)H(

C−C′)Gj =

(
L∑

k=1

∣∣sk−s′k
∣∣2)GH

i Gj =0 (9)

In other words, the L columns of B constitute an orthogonal hence
linearly independent set of vectors. Therefore, rank(B) = L for every
pair of distinct codewords, resulting in a diversity gain of Lm.
• The rows of the matrix Θ are not orthogonal.

Proof: We may write Θi = FiCG and Θj = FjCG where Θi

represents the ith row of Θ and so on. We have:

Θi · Θj = ΘiΘH
j = FiCGGHCHFH

j = FiCCHFH
j (10)

Using the third property of the new code reduces (10) to(
L∑

k=1

|sk|2
)

 L∑
p=1

FipF∗
jp


 . (11)

L∑
k=1

|sk|2 is clearly nonzero and so is
∑
p

FipF∗
jp when the index of

summation varies from 1 to L and L < n, thus ending the proof of
the recent property.
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Corollary : This property rules out the possibility of ML detection
of the transmitted block of signals using only linear processing at the
receiver. In fact as will be explained in Section 5, ML decoding of a
received block entails an exhaustive search over the set of all bL possible
Θ matrices.
• The proposed code is maximum distance separable (MDS).

Proof: By looking at the structure of a typical C matrix, we may
write:

C =
[

UL×L

0(n−L)×L

]

where 0(n−L)×L denotes an (n − L) × L zero matrix and in order
to avoid any confusion, we have represented the L × L orthogonally
arranged block of information with U instead of OT (s1, s2, . . . , sL).
Note that:

Θ = FCG = F
[

UL×L

0(n−L)×L

]
G = F

[
(UG)L×L

0(n−L)×L

]
= FX (12)

where X=CG. Let U′ = UG and let Θi, U′
i, and Xi denote the ith

columns of Θ, U′, and X respectively. We can write:

Θ=[Θ1|Θ2| . . . |ΘL] = F [X1|X2| . . . |XL] = [FX1|FX2| . . . |FXL]

=F
[
(U′

1)L×1

0(n−L)×1

∣∣∣∣(U′
2)L×1

0(n−L)×1
|. . .

∣∣∣∣(U′
L)L×1

0(n−L)×1

]
=F(L) [U1|U2|. . .|UL](13)

where the last equality is a direct result of the fact that:

FXi = F(L)U′
i (14)

A closer examination of (14) reveals an interesting fact. One
can regard U′

i as an information vector of length L and F(L) as the
full-rank generator matrix of an (n, L) linear block code. We shall
represent the minimum hamming distance of this code with dmin. Also
interesting to note is that the remaining n − L orthogonal columns of
F constitute the full-rank parity check matrix of the aforementioned
linear block code. It is a well known fact that the minimum hamming
distance of a linear block code equals the rank of its parity check matrix
plus one (See [15] for a detailed proof of the recent statement). Since
the parity check matrix is full-rank, dmin = n − L + 1 and maximum
distance separability follows suit.

According to the above interpretation, the ith column of the
codeword Θ, i.e., Θi can be regarded as a codevector produced by the
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information vector U′
i and the generator matrix F(L). If we represent

the minimum hamming distance between two codewords Θ and Θ′ or
equivalently the minimum hamming distance of the proposed space-
time block code by d, we can obviously write:

d ≥ Ldmin = L (n − L + 1) . (15)

• We believe that due to its inherent redundancy as well as diversity,
the new code can provide more coding gain than orthogonal space-time
block codes.

For instance, using a BPSK constellation of {±1} at baseband, the
new code with the two-dimensional inverse discrete cosine transform
(IDCT) as its unitary transform yields a coding gain of 8 when n = 4
and L = 2 in a Rayleigh channel which is twice that of its orthogonal
counterpart, i.e., a 4×4 orthogonal code. This result has been obtained
by finding the matrix A introduced in Section 4 together with its rank
r for every pair of distinct codewords and determining the minimum
of rth roots of the product of its r nonzero eigenvalues for both coding
schemes.

We believe that this most prominent feature of the new space-time
code gives it the upper hand in performance at lower signal to noise
ratios compared with the conventional orthogonal codes in practical
communication scenarios that the elements of the channel matrix are
correlated. As will be shown by the simulation results, the higher the
correlation between the path gains, the more the similarity between
MIMO and SISO systems, the greater the gap in performance between
the new code and orthogonal repetition-based codes and the wider the
range of signal to noise ratios over which the proposed code performs
better.

5. ML DECODING OF THE PROPOSED LINEAR
SPACE-TIME BLOCK CODE

Assuming perfect channel information, the ML decoder of a MIMO
system suffering from fading and corrupted by additive white Gaussian
noise described by (1) computes the decision metric

L∑
t=1

m∑
j=1

∣∣∣∣∣rj
t −

n∑
i=1

HjiΘit

∣∣∣∣∣
2

(16)

over all distinct codewords Θ and decides in favour of the one that
minimizes this sum.
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In orthogonal codes, the columns of each transmitted array are
all permutations of the first column with possibly different signs.
Therefore, having the first column determines the codeword uniquely.
Owing to the orthogonality of the rows of the transmitted array, ML
decoding can be done by simple linear processing as explained in [3].

In contrast, as proved in Section 4, the rows of the transmitted
arrays are not orthogonal in the proposed coding scheme. Thus for
these codes, ML decoding cannot be realized via linear processing,
instead it entails minimizing (12) over the set of all possible Θ matrices,
the number of which is 2bL as we will prove in the following.

Proof: Due to their one to one correspondence, the number of
Θ matrices equals the number of C matrices introduced in Section 3.
The structure of a C matrix is such that having the first L elements
of its first column determines it uniquely. Each of these elements can
be chosen from a set of 2b constellation signals, resulting in a total of(
2b

)L = 2bL possibilities for the C hence Θ matrices.

6. ERROR PERFORMANCE SIMULATIONS

In the simulations, a BPSK baseband constellation of {±1} is
employed. The additive noise components of the m receive antennas
are assumed to be independent identically distributed zero-mean
complex Gaussian random variables, each having a variance of 1

2SNR
per dimension. The two-dimensional IDCT is used as the unitary
transform for the proposed code. The plots in this section show the bit
error rate (BER) vs. signal to noise ratio (SNR) for both orthogonal
coding scheme and the proposed code. For the comparisons to be fair,
the following conditions must be met.
• Both codes must use the same number of transmit and receive
antennas.
• Both codes must have similar bit/symbol rates. Therefore, we always
compare an n × n orthogonal code with an n × L proposed code.
• The total power radiated per bit by the transmit antennas must be
the same for both codes. Since the C matrices introduced in Section 3
contain zeros in their structure, they must be multiplied by a power
equalizing factor of

√
n/L.

In our simulations, we set n = 4, L = 2, and m = 2. The graphs
of this section compare the performance of the codes for different
amounts of correlation between the fading coefficients, including the
two extreme cases of zero and full correlation.

Let H′
nm×1 = vec (H) and name it the channel vector. The
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covariance matrices of the five channel vectors employed in the
simulations are given below:

COV1 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

COV2 =
1 0.36897 0.35641 0.41552 0.98424 0.27016 0.39232 0.37191
0.36897 1 0.47387 0.57817 0.51773 0.98768 0.46888 0.45216
0.35641 0.47387 1 0.53669 0.45548 0.36136 0.99435 0.41374
0.41552 0.57817 0.53669 1 0.522 0.47622 0.46702 0.98415
0.98424 0.51773 0.45548 0.522 1 0.41765 0.48376 0.45893
0.27016 0.98768 0.36136 0.47622 0.41765 1 0.35976 0.35258
0.39232 0.46888 0.99435 0.46702 0.48376 0.35976 1 0.33594
0.37191 0.45216 0.41374 0.98415 0.45893 0.35258 0.33594 1

COV3 =
1 0.77448 0.81911 0.78613 0.99256 0.73918 0.83248 0.69186
0.77448 1 0.73125 0.80142 0.79665 0.99704 0.7667 0.7135
0.81911 0.73125 1 0.83435 0.76733 0.73869 0.99166 0.79874
0.78613 0.80142 0.83435 1 0.79836 0.80567 0.79168 0.98696
0.99256 0.79665 0.76733 0.79836 1 0.75887 0.77965 0.7022
0.73918 0.99704 0.73869 0.80567 0.75887 1 0.77125 0.72592
0.83248 0.7667 0.99166 0.79168 0.77965 0.77125 1 0.73884
0.69186 0.7135 0.79874 0.98696 0.7022 0.72592 0.73884 1

COV4 =
1 0.92306 0.92364 0.93597 0.9962 0.95694 0.91799 0.897
0.92306 1 0.89855 0.91012 0.91898 0.99417 0.91233 0.8636
0.92364 0.89855 1 0.90411 0.88885 0.91371 0.99788 0.93418
0.93597 0.91012 0.90411 1 0.9207 0.93984 0.91763 0.9805
0.9962 0.91898 0.88885 0.9207 1 0.95339 0.8831 0.86528
0.95694 0.99417 0.91371 0.93984 0.95339 1 0.92398 0.89295
0.91799 0.91233 0.99788 0.91763 0.8831 0.92398 1 0.946
0.897 0.8636 0.93418 0.9805 0.86528 0.89295 0.946 1
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COV5 =

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Figures 1–5 compare the performance of the proposed code and
its orthogonal counterpart in Rayleigh fading channels. As Fig. 1
shows, when there is no correlation between the fading coefficients,
orthogonal codes outperform the proposed code. However as the
amount of correlation increases, this superiority fades away. In fact it
is observed that when there is some correlation between the elements of
the channel matrix, the new code performs better than its orthogonal
counterpart up to some SNR, and then the situation is reversed. It is
also seen that as this correlation rises, the new code achieves better
performance over a wider range of SNRs, pushing the intersection point
of the two BER curves further to the right (See Figs. 2, 3, and 4).
Finally, as shown in Fig. 5, in the extreme case of experiencing full
correlation between the fading coefficients, i.e., when they are all equal
and the MIMO system is not any different from the SISO system, the
proposed code attains much better a performance in comparison to its

Figure 1. The BER performance comparison of the new code with
its orthogonal counterpart in an uncorrelated Rayleigh fading channel
(corresponding to COV1) for n=4, L=2, and m=2.
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Figure 2. The BER performance comparison of the new code with
its orthogonal counterpart in a correlated Rayleigh fading channel
(corresponding to COV2) for n = 4, L= 2, and m = 2.

Figure 3. The BER performance comparison of the new code with
its orthogonal counterpart in a correlated Rayleigh fading channel
(corresponding to COV3) for n = 4, L= 2, and m = 2.

orthogonal counterpart for all practical SNRs. Figs. 6–7 compare the
performance of the two coding schemes in Ricean fading channels with
the line-of-sight component of the signal having as much power as all
the other components. In other words, if we denote the ratio of the
power of the line-of-sight component of the signal and the power of
all the other components by Kf , the simulations have been done with
Kf = 1. Once again it is observed that a boost in channel correlation



224 Nobandegani and Azmi

Figure 4. The BER performance comparison of the new code with
its orthogonal counterpart in a correlated Rayleigh fading channel
(corresponding to COV4) for n = 4, L= 2, and m = 2.

Figure 5. The BER performance comparison of the new code with its
orthogonal counterpart in a fully-correlated Rayleigh fading channel
(corresponding to COV5) for n = 4, L= 2, and m = 2.
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Figure 6. The BER performance comparison of the new code
with its orthogonal counterpart in a correlated Ricean fading channel
(corresponding to COV2) for n = 4, L= 2, m = 2, and Kf = 1.

Figure 7. The BER performance comparison of the new code
with its orthogonal counterpart in a correlated Ricean fading channel
(corresponding to COV4) for n = 4, L= 2, m = 2, and Kf = 1.
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results in the superiority of the new scheme in a wider range of SNRs
to its orthogonal counterpart.

7. CONCLUSIONS

In this paper, we presented a new linear MDS space-time block code,
discussed its properties and derived its ML decoder. We believe
that due to its greater coding gain, it can perform better than the
conventional linear orthogonal space-time block codes in a realistic
situation when there is some correlation between the fading coefficients.
In other words, we think that relying mainly on repetition and
attempting to increase the diversity will not yield the best possible
results. It seems that increasing the coding gain through adding some
redundancy to the sent information while considering a reasonable
amount of repetition in the design of the channel code is more fruitful in
such situations and can enhance the performance. Bearing witness to
the veracity of this claim are the error performance simulation results
presented in Section 6. Of course we must add that this improvement
comes at the cost of increased decoding complexity in comparison to
the conventional orthogonal space-time block codes.

We believe that the studies we initiated here, only scratch the
tip of the iceberg, yet they unveil a coding strategy better suited to
correlated fading channels than the well known orthogonal space-time
block codes in lower signal to noise ratios. It was also shown via
simulations that when the correlation between the fading coefficients
rose [16–24], the range of signal to noise ratios over which the proposed
code outperformed its orthogonal counterpart and the gap between
their performance curves widened.
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