Vol. 1
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-03-02
Fractional Surface Waveguide
By
Progress In Electromagnetics Research C, Vol. 1, 199-209, 2008
Abstract
Fractional curl operator has been utilized to study the fractional order surface waveguides. Fractional order surface waveguides may be regarded as intermediate step of two surface waveguides which are related through the principle of duality. Fractional eigenvalue equations are examined at the interface between dielectric medium and free space, for various values of fractional order parameter result in different fractional surface wave modes.
Citation
Husnul Maab, and Qaisar Naqvi, "Fractional Surface Waveguide," Progress In Electromagnetics Research C, Vol. 1, 199-209, 2008.
doi:10.2528/PIERC08020801
References

1. Engheta, N., "Fractional curl operator in electromagnetics ," Microwave and Optical Technology Letters, Vol. 17, No. 2, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E

2. Naqvi, Q. A., G. Murtaza, and A. A. Rizvi, "Fractional dual solutions to Maxwell equations in homogeneous chiral medium," Optics Communications, Vol. 178, 27-30, 2000.
doi:10.1016/S0030-4018(00)00651-9

3. Velied, E. I. and N. Engheta, "Fractional curl operator in reflection problems ," 10th Int. Conf. on Mathematical Methods in Electromagnetic Theory, Ukraine, Sept. 14–17, 2004.

4. Ivakhnychenko, M. V., E. I. Veliev, and T. M. Ahmedov, "Fractional operators approach in electromagnetic wave reflection problems," Journal of Electromagnetic Waves and Applications , Vol. 21, No. 13, 1787-1802, 2007.

5. Hussain, A. and Q. A. Naqvi, "Fractional curl operator in chiral medium and fractional nonsymmetric transmission line," Progress In Electromagnetics Research, Vol. 59, 119-213, 2006.

6. Hussain, A., S. Ishfaq, and Q. A. Naqvi, "Fractional curl operator and fractional waveguides," Progress In Electromagnetics Research, Vol. 63, 319-335, 2006.
doi:10.2528/PIER06060604

7. Hussain, A., M. Faryad, and Q. A. Naqvi, "Fractional curl operator and fractional Chiro-waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1119-1129, 2007.

8. Faryad, M. and Q. A. Naqvi, "Fractional rectangular waveguides ," Progress In Electromagnetics Research, Vol. 75, 383-396, 2007.
doi:10.2528/PIER07052803

9. Rostami, A. and H. Motavali, "Asymptotic iteration method: A powerful approach for analysis of inhomogeneous dielectric slab waveguides," Progress In Electromagnetics Research B, Vol. 4, 171-182, 2008.
doi:10.2528/PIERB08011701

10. Cheng, Q. and T. J. Cui, "Guided modes and continuous modes in parallel-plate waveguides excited by a line source," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1577-1587, 2007.

11. Li, Z., T. J. Cui, and J. F. Zhang, "TM wave coupling for high power generation and transmission in parallel-plate waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 7, 947-961, 2007.
doi:10.1163/156939307780749039

12. Soekmadji, H., S.-L. Liao, and R. J. Vernon, "Trapped mode phenomena in a weakly overmoded waveguiding structure of rectangular cross section," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 143-157, 2008.
doi:10.1163/156939308783122706

13. Volski, V. and G. A. E. Vandenbosch, "Field generated by a magnetic line source embedded in a semi-infinite dielectric slab," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 1, 3-18, 2005.
doi:10.1163/1569393052955071

14. Dabirian, A. and M. Akbari, "Modal transmission-line theory of optical waveguides," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 891-906, 2005.
doi:10.1163/156939305775468732

15. Tomita, M. and Y. Karasawa, "Analysis of scattering and coupling problem of directional coupler for rectangular dielectric waveguides," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 9, 1261-1262, 2000.
doi:10.1163/156939300X01184

16. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "Complete spectral representation for the electromagnetic field of planar multilayered waveguides containing pseudochiral O-media," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 3, 349-350, 1998.
doi:10.1163/156939398X00674

17. Hayashi, Y., "Analysis of electromagnetic scattering by open boundary," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 6, 807-820, 1997.
doi:10.1163/156939397X00963

18. Pozar, D. M., Microwave Engineering, 2nd Ed., 170176, John Wiley & Sons, 1998.