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Abstract—Fractional curl operator has been utilized to study
the fractional order surface waveguides. Fractional order surface
waveguides may be regarded as intermediate step of two surface
waveguides which are related through the principle of duality.
Fractional eigenvalue equations are examined at the interface between
dielectric medium and free space, for various values of fractional order
parameter result in different fractional surface wave modes.

1. INTRODUCTION

Fractional curl operator which is represented as curlα, where α denotes
the order of the operator, obtains from fractionalization of the usual
curl operator. Fractional curl operator constructs new set of solutions
to Maxwell equations, which may be described as an intermediate steps
between original solution set and the dual to the original solution set.
These solutions are named as “fractional field” see for instance [1]. The
applications of fractional curl operator was further extended by Naqvi
et al. [2], they discussed the behavior of fractional dual solution in an
unbounded chiral medium. Veliev and Engheta [3] and Ivakhnychenko
et al. [4] utilized the fractional curl operator to a fixed solution and
obtained the fractional fields that represent the solution of reflection
problem from anisotropic surface impedance. Hussain and Naqvi [5],
introduction the idea of fractional nonsymmetric transmission line.
† Also with Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan



200 Maab and Naqvi

Hussain et al. [6, 7], extended this idea to study fractional waveguides.
Afterward Faryad and Naqvi [8] extended the work of fractional dual
parallel plates waveguides and constructed the solutions corresponding
to the fractional dual rectangular wave guides.

Propagation through waveguide structures has been studied by
various authors [9–17]. In present paper we have extended the idea
of fractional dual parallel plates waveguides [7] to surface waveguide
or open waveguide. Surface waveguides are particularly used in
millimetric-wave circuits. The fractional field expressions are carried
out in both dielectric medium and free space. The fractional eigenvalue
equations are examined numerically at the interface between dielectric
medium and free space, taking t = λ0/4 and t = λ0/2, for
various values of fractional parameter α and results represent various
intermediate fractional surface wave modes.

2. FRACTIONAL SURFACE WAVEGUIDE

Consider a surface waveguide composed of a dielectric of thickness “t”
coated on plane perfect electric conductor. It is assumed to be of
infinite extent in the y and z directions. We assume propagation in
the +z direction with eiβz propagation factor and no variation in the
y direction, that is (∂/∂y = 0). The geometry is divided into two
regions. The first region (0 < x < t) consists of dielectric material of
permittivity ε = κε0 and the other region x > t represents the free
space. The total TM fields for region 0 < x < t may be written as

Ez = ẑA sin(kdx) exp(iβz) (1a)

Ex = x̂
iβ

kd
A cos(kdx) exp(iβz) (1b)

ZHy = −ŷ ik
kd
A cos(kdx) exp(iβz) (1c)

where β2 = k2 − k2
d, k =

√
κk0, k0 = ω

√
µ0ε0, Z =

√
µ0

κε0
, and

m−1
2 π ≤ kdt ≤ m

2 π, m is positive integer. Z is the impedance of
the dielectric medium. For region t < x <∞

Ez = ẑA sin(kdt) exp(−h(x− t) + iβz) (2a)

Ex = x̂
iβ

h
A sin(kdt) exp(−h(x− t) + iβz) (2b)

Z0Hy = −ŷ ik0
h
A sin(kdt) exp(−h(x− t) + iβz) (2c)
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where β2 = k2
0 − h2, Z0 =

√
µ0

ε0
implies that kd = ih in free space, and

0 < h < 2n, n is positive integer.
We have first examined the fractional dual solutions of E-waves

in the region 0 < x < t. Total field in this region may be considered
as combination of two TEM waves bouncing back and forth between
the two boundaries, that is x = 0 and x = t. The x = 0 boundary
represent PEC interface. For region 0 < x < t, fields given in (1) may
be written as

Ez = −iẑA
2

[exp(ikdx+ iβz) − exp(−ikdx+ iβz)] (3a)

Ex = x̂
iβ

kd

A

2
[exp(ikdx+ iβz) + exp(−ikdx+ iβz)] (3b)

ZHy = −ŷ ik
kd

A

2
[exp(ikdx+ iβz) + exp(−ikdx+ iβz)] (3c)

The total electric and magnetic fields in region 0 < x < t are

E = E1 + E2, (4a)
ZH = ZH1 + ZH2 (4b)

where (E1, H1) represents the electric and magnetic fields related with
one plane wave and are given below

E1 =
A

2

[
−iẑ +

iβ

kd
x̂

]
exp(ikdx+ iβz) (5a)

ZH1 = −A
2
k

kd
iŷ exp(ikdx+ iβz) (5b)

The electric and magnetic fields related to other plane wave are
represented by (E2, H2) as below

E2 =
A

2

[
iẑ +

iβ

kd
x̂

]
exp(−ikdx+ iβz) (6a)

ZH2 = −A
2
k

kd
iŷ exp(−ikdx+ iβz) (6b)

It is of interest to find the solutions to the Maxwell equations
which may be regarded as intermediate steps of the solutions (E, ZH)
and dual to the solutions (E, ZH). These fractional solutions
have been termed as fractional dual solutions to Maxwell equations.
Fractional dual solutions may be obtained by fractionalizing curl
operator in Maxwell equations or using fractional cross product
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(ki×)α where i = 1, 2. For this purpose, we need eigenvectors and
eigenvalues of the (ki×), where ki are the wave vectors of the two
plane wave bouncing back and forth. To determine the eigenvectors
and eigenvalues of (k1×), we re-arrange Eq. (5) as follow

E1 = −Ak
2kd

[
iẑ
kd

k
− iβ
k
x̂

]
exp(ikdx+ iβz) (7a)

ZH1 = −Ak
2kd
iŷ exp(ikdx+ iβz) (7b)

The eigen vectors and eigen values of the operator k1× are

A1 =
1√
2

[
− iβ
k
x̂+ ŷ +

ikd

k
ẑ

]
, a1 = i

A2 =
1√
2

[
iβ

k
x̂+ ŷ − ikd

k
ẑ

]
, a2 = −i

A3 = − ikd

k
x̂− iβ

k
ẑ, a3 = 0

Field E1 may be expressed in terms of the eigenvectors of k1× as

E1 = [P1A1 +Q1A2 +R1A3] exp(ikdx+ iβz) (8)

where the coefficients are

P1 =
−Ak

2
√

2kd

Q1 =
Ak

2
√

2kd

R1 = 0

Using the fractional curl operator, fractional dual fields may be
obtained using the following relations [2]

E1fd = [(ik)−1∇×]αE1 (9a)

ZH1fd = [(ik)−1∇×]α(ZH1) (9b)

It may be noted that |k1| = |k2|. This means that application of
fractional cross product operator (k1×)α on vectors (E1, ZH1) in
Eq. (8) gives the results, which may be regarded as the intermediate
steps between the initial solution set (E1, ZH1) and final solution set
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(ZH1, −E1) and are given as

E1fd = (k1×)αE1

= −Ak
2kd

[
− iβ
k

cos
(απ

2

)
x̂+ i sin

(απ
2

)
ŷ

+
ikd

k
cos

(απ
2

)
ẑ

]
exp(ikdx+ iβz) (10a)

ZH1fd = (k1×)αZH1

= −Ak
2kd

[
iβ

k
sin

(απ
2

)
x̂+ i cos

(απ
2

)
ŷ

− ikd

k
sin

(απ
2

)
ẑ

]
exp(ikdx+ iβz) (10b)

The behavior of fractional electric and magnetic field represent a
counterclockwise rotation by an angle απ/2.

To define the eigenvectors and eigenvalues of the cross product
operator (k2×) Eq. (6) can be rearranged as follow

E2 =
−kA
2kd

[
− ikd

k
ẑ − iβ

k
x̂

]
exp(−ikdx+ iβz) (11a)

ZH2 = −Ak
2kd
iŷ exp(−ikdx+ iβz) (11b)

Eigenvectors and eigenvalues of the operator (k2×) are

A1 =
1√
2

[
− iβ
k
x̂+ ŷ − ikd

k
ẑ

]
, a1 = i

A2 =
1√
2

[
iβ

k
x̂+ ŷ +

ikd

k
ẑ

]
, a2 = −i

A3 =
ikd

k
x̂− iβ

k
ẑ, a3 = 0

Vector E2 may be expressed as linear combination of eigenvectors of
k2×

E2 = [P2A1 +Q2A2 +R2A3] exp(−ikdx+ iβz) (12)

where the coefficients are

P2 =
−Ak

2
√

2kd

Q2 =
Ak

2
√

2kd

R2 = 0
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The required fractional solutions of Eq. (12) may be considered as the
intermediate step between the solution set (E2, ZH2) and the dual
solution set (ZH2, −E2) and are given by

E2fd = (k2×)αE2

= −Ak
2kd

exp(−iαπ)
[
− iβ
k

cos
(απ

2

)
x̂− i sin

(απ
2

)
ŷ

− ikd

k
cos

(απ
2

)
ẑ

]
exp(−ikdx+ iβz) (13a)

ZH2fd = (k×)αZH1

= −Ak
2kd

exp(−iαπ)
[
− iβ
k

sin
(απ

2

)
x̂+ i cos

(απ
2

)
ŷ

− ikd

k
sin

(απ
2

)
ẑ

]
exp(−ikdx+ iβz) (13b)

If we summarize the fractional fields in the above equations, they show
rotation by an angle of απ/2 in counterclockwise direction. Therefore
the total fractional fields for the region 0 ≤ x ≤ t are considered to
be the fractional intermediate steps between (E, ZH) and (ZH,−E).
That shows rotation by an angle of απ/2 in counterclockwise direction.
These are obtained by substituting the fractional results in Eq. (10)
and Eq. (13) in Eq. (4)

Efd =−Ak
kd

exp(−iαπ/2)
[
− iβ
k

cos
(απ

2

)
cos

(
kdx+

απ

2

)
x̂

− sin
(απ

2

)
sin

(
kdx+

απ

2

)
ŷ− kd

k
cos

(απ
2

)
sin

(
kdx+

απ

2

)
ẑ

]
exp(iβz)

(14a)

ZHfd =−Ak
kd

exp(−iαπ/2)
[
−β
k

sin
(απ

2

)
sin

(
kdx+

απ

2

)
x̂

+i cos
(απ

2

)
cos

(
kdx+

απ

2

)
ŷ− ikd

k
sin

(απ
2

)
cos

(
kdx+

απ

2

)
ẑ

]
exp(iβz)

(14b)

To derive the fractional fields of the E-waves in free space x > t,
rearrange Eq. (2)

E = −Ak0
h

sin(kdt) exp(ht)
[
− iβ
k0
x̂− h

k0
ẑ

]
exp(−hx+iβz) (15a)

Z0H = −Ak0
h

sin(kdt)iŷ exp(ht) exp(−hx+ iβz) (15b)
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The fractional dual fields in free space region x > t become as follow

Efd = −Ak0
h

sin(kdt)
[
− iβ
k0

cos
(απ

2

)
x̂

+i sin
(απ

2

)
ŷ− h

k0
cos

(απ
2

)
ẑ

]
exp(−h(x− t)+iβz) (16a)

Z0Hfd = −Ak0
h

sin(kdt)
[
iβ

k0
sin

(απ
2

)
x̂

+i cos
(απ

2

)
ŷ+

h

k0
sin

(απ
2

)
ẑ

]
exp(−h(x− t)+iβz) (16b)

For α = 0, we get the original solutions in both regions and for
α = 1 the fractional fields in both region rotated by an angle π/2
in counterclockwise direction, results in TE surface wave mode from
TM surface wave mode.

The surface impedance of the fractional surface waves in dielectric
region of thickness “t” obtained from Eq. (14a) and Eq. (14b) is

Zd =
Ezfd

Hyfd
= i
kd

k
z tan

(
kdx+

απ

2

)
(17)

and that in the free space (x > t) is

Zfree =
Ezfd

Hyfd
= i

h

k0
z0 (18)

According to the transverse-resonance technique [9], the transverse
resonance at x = t requires that the sum of impedances seen looking
toward the shot-circuit(in this case the PEC at x = 0) and that at the
input to the infinite line (in this case x > t) vanish. Therefore equating
Eq. (17) and Eq. (18) gives the required fractional eigenvalue equation

ht =
kdt

κ
tan

(
kdt+

απ

2

)
(19)

where z
k = z0

κk0
. We note that for α = 0, Eq. (19) reduces to

ht =
kdt

κ
tan(kdt) (20)

which represent the eigenvalue equation of TM mode. But for α = 1,
Eq. (19) gives the eigenvalue equation of TE mode that is

ht = −kdt

κ
cot(kdt) (21)
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Figure 1. Plots of eigenvalue equations for various values of fractional
parameter.
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As the phase matching of tangential continuity at x = t interface for
all value of z is achieved by the following relation

(kdt)2 + (ht)2 = (κ− 1)(k0t)2 (22)

which represents the equation of a circle of radius
√
κ− 1(k0t).

We have carried out the simultaneous numerical solution of
Eq. (19) and Eq. (22) for t = λ0/4 and t = λ0/2, where λ0 is the free
space wavelength, and κ = 2.56 as shown in Fig. 1. The two circles
represented by solid line and dash line corresponded to t = λ0/4 and
t = λ0/2 respectively. For α = 0, circle corresponding to t = λ0/4
results in one TM surface wave mode, while circle for t = λ0/2 results
in two TM surface wave modes. We have obtained plots for various
values of fractional parameter α. From the plots shown in Fig. 1,
we have observed the following informations. For α = 0, 0.25, 0.5 or
0 ≤ α ≤ 0.5, there exist one surface wave mode for t = λ0/4 and two
surface wave modes for t = λ0/2. But for α = 0.75, 0.85, 0.95, 1 or
0.5 ≤ α ≤ 1, we can see only one surface wave mode. This is because
the TE mode in surface waveguide does not propagate until the radius
of the circle,

√
κ− 1(k0t), becomes greater than π/2 [18].

3. CONCLUSIONS

We have noted that for α = 0, we get the original TM fields in both
dielectric and free space regions, but for α = 1, the electric and
magnetic fields of original TM fields are rotated by an angle π/2 in
counterclockwise direction and become TE surface wave modes. If
the fractional fields are evaluated for higher order values of fractional
parameter α, then for even values of α, we obtain TM surface wave
modes and while for odd values of α we get TE surface wave modes.
The corresponding fractional order surface wave eigen modes are
analyzed for various values of α that show an intermediate steps
between TM surface wave eigen modes and TE surface wave eigen
modes.
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