Vol. 1
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-02-07
A New Mathematical Proposal for Generation of Shape Invariant Potentials and Optical Medium Using Supersymmetric Quantum Mechanics
By
Progress In Electromagnetics Research C, Vol. 1, 131-141, 2008
Abstract
A new mathematical method and proposal for generation of shape invariant potentials using supersymmetric quantum mechanics is introduced. For this purpose the potential term in the Schrodinger equation is expressed in terms of the super potential. The obtained equation transformed into well known ordinary second order differential equation. Using standard technique, the Nikiforov-Uvarov (NU) method the superpotential in the Schrodinger equation is expressed in terms of the parameters appeared in the NU-approach concluding to a nonlinear differential equation. By solving the obtained equation and using relation between superpotential and potential the shape invariant potentials are obtained. The proposed method is general and straightforward for introducing of the shape invariant potentials.
Citation
Hossein Motavali, and Ali Rostami, "A New Mathematical Proposal for Generation of Shape Invariant Potentials and Optical Medium Using Supersymmetric Quantum Mechanics," Progress In Electromagnetics Research C, Vol. 1, 131-141, 2008.
doi:10.2528/PIERC08012602
References

1. Fayet, P. and S. Ferrara, Supersymmetry in Physics, 1985.

2. Witten, E., Nucl. Phys. B, Vol. 188, 513, 1981.
doi:10.1016/0550-3213(81)90006-7

3. Cooper, F., A. Khare, and U. Sukhatme, Supersymmetry in Quantum Mechanics, World Scientific, 2001.

4. Gel'fand, Y. A. and E. P. Likhtman, JETP Lett., Vol. 13, 323, 1971.

5. Ramond, P., Phys. Rev. D, Vol. 3, 2415, 1971.
doi:10.1103/PhysRevD.3.2415

6. Volkov, D. and V. Akulov, Phys. Lett. B, Vol. 46, 109, 1973.

7. Wess, J. and B. Zumino, Nucl. Phys., Vol. 70, 39, 1974.
doi:10.1016/0550-3213(74)90355-1

8. Fayet, P. and S. Ferrara, Phys. Rep., Vol. 32, 249, 1977; M. F. Sohnius, Phys. Rep., Vol. 128, 39, 1985.
doi:10.1016/0370-1573(77)90066-7

9. Cooper, F. and B. Freedman, Ann. Phys., Vol. 146, 262, 1983.
doi:10.1016/0003-4916(83)90034-9

10. Bender, C., F. Cooper, and A. Das, Phys. Rev. D, Vol. 28, 1473, 1983.
doi:10.1103/PhysRevD.28.1473

11. Gates, Jr., S. J., M. Grisaru, M. Rocek, and W. Siegel, Superspace or One Thousand and One Lessons in Supersymmetry, Benjamin/Cummings, Reading, Mass., 1983.

12. Green, M. B., J. Schwarz, and E. Witten, Superstring Theory, Cambridge, 1987.

13. Cooper, F., A. Khare, and U. Sukhatme, "Supersymmetry and quantum mechanics," Phys. Rep., Vol. 251, 267, 1995.
doi:10.1016/0370-1573(94)00080-M

14. Cooper, F., J. N. Ginocchio, and A. Khare, Phys. Rev. D, Vol. 36, 356, 1983.

15. Nikiforov, A. F. and V. B. Uvarov, "Special functions of mathematical physics ," Birkhauser, Basel, 1988.

16. Aktas, M. and R. Sever, "Exact supersymmetric solution of Schrodinger equation for central confining potentials by using the Nikiforov-Uvarov method ," J. Mol. Struct. Theochem, Vol. 710, 223, 2004.
doi:10.1016/j.theochem.2004.09.011

17. Berkdemir, A., C. Berkdemir, and J. Han, "Bound state solutions of the Schrodinger equation for modified Kratzer's molecular potential ," Chem. Phys. Lett., Vol. 417, 326, 2006.
doi:10.1016/j.cplett.2005.10.039

18. Berkdemir, C., A. Berkdemir, and R. Sever, "Systematical approach to the exact solutions of the Dirac equation for a deformed form of the Woods-Saxon potential," J. Phys. A: Math. Gen., Vol. 39, 13455, 2006.
doi:10.1088/0305-4470/39/43/005

19. Yasuk, F., A. Durmus, and I. Boztosun, "Exact analytical solution to the relativistic Klein-Gordon equation with non-central equal scalar and vector potentials," J. Math. Phys., Vol. 47, 082302, 2006.
doi:10.1063/1.2227258

20. Egrifes, H. and R. Sever, "Bound state of the Dirac equation for the PT-symmetric generalized Hulthen potential by the Nikiforov-Uvarov method," Phys. Lett. A, Vol. 344, 117, 2005.
doi:10.1016/j.physleta.2005.06.061

21. Simsek, M. and H. Egrifes, "The Klein-Gordon equation for the generalized Hulthen potential in complex quantum mechanics," J. Phys. A: Math. Gen., Vol. 37, 4379, 2004.
doi:10.1088/0305-4470/37/15/007

22. Bayrak, O. and I. Boztosun, "Analytical solution to the Hulthen and Morse potentials by using the asymptotic iteration method," J. Mol. Struct. Theochem, Vol. 802, 17, 2007.
doi:10.1016/j.theochem.2006.09.006

23. Yasuk, F., C. Berkdemir, and A. Berkdemir, "Exact solutions of the Schrodinger equation with non-central potential by the Nikiforov-Uvarov method ," J. Phys. A: Math. Gen., Vol. 38, 6579, 2005.
doi:10.1088/0305-4470/38/29/012

25. Yasiltas, O., "PT/non-PT symmetric and non-Hermitian Poschl-Teller-like solvable potentials Nikiforov-Uvarov method," Phys. Scr., Vol. 75, 41, 2007.
doi:10.1088/0031-8949/75/1/006

25. Hatamzadeh-Varmazyar, S. and M. Naser-Moghadasi, "New numerical method for determining the scattered electromagnetic fields from thin wires," Progress In Electromagnetics Research B, Vol. 3, 207-218, 2008.
doi:10.2528/PIERB07121303

26. Banai, A. and A. Hashemi, "A hybrid multimode contour integral method for analysis of the H-plane waveguide discontinuties," Progress In Electromagnetics Research, Vol. 81, 167-182, 2008.
doi:10.2528/PIER07122601

27. Ho, M., F.-S. Lai, S.-W. Tan, and P.-W. Chen, "Numerical simulation of propagation of EM pulse through lossless nonuniform dielectric slab using characteristic-based method ," Progress In Electromagnetics Research, Vol. 81, 197-212, 2008.
doi:10.2528/PIER08010303

28. Collino, F., F. Millot, and S. Pernet, "Boundary-integral methods for iterative solution of scattering problems with variable impedance surface condition ," Progress In Electromagnetics Research, Vol. 80, 1-28, 2008.
doi:10.2528/PIER07103105

29. Carpentieri, B., "Fast iterative solution methods in electromagnetic scattering," Progress In Electromagnetics Research , Vol. 79, 151-178, 2008.
doi:10.2528/PIER07100802

30. Singh, V., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method ," Progress In Electromagnetics Research, Vol. 64, 191-204, 2006.
doi:10.2528/PIER06071101

31. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using equivalent sources method," Progress In Electromagnetics Research, Vol. 72, 61-73, 2007.
doi:10.2528/PIER07030802

32. Berginc, G. and C. Bourrely, "The small-slope approximation method applied to a three-dimensional slab with rough boundaries," Progress In Electromagnetics Research, Vol. 73, 131-211, 2007.
doi:10.2528/PIER07030806

33. Kazemi, S., H. R. Hassani, G. Dadashzadeh, and F. Geran, "Performance improvement in amplitude synthesis of unequally spaced array using least mean square method ," Progress In Electromagnetics Research B, Vol. 1, 135-145, 2008.
doi:10.2528/PIERB07103002

34. Samuel, E. P. and D. S. Patil, "Analysis of wavefunction distribution in quantum well biased laser diode using transfer matrix method," Progress In Electromagnetics Research Letters, Vol. 1, 119-128, 2008.
doi:10.2528/PIERL07111902