Vol. 1
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2007-12-27
Soliton Parameter Dynamics in a Non-Kerr Law Media
By
Progress In Electromagnetics Research C, Vol. 1, 1-35, 2008
Abstract
The adiabatic parameter dynamics of non-Kerr law optical solitons is obtained in this paper by the aid of soliton perturbation theory. The various kinds of perturbation terms that arise exhaustively in the context of optical solitons are considered in this paper. The new conserved quantity is also used to obtain the adiabatic dynamics of the soliton phase in all cases of non-Kerr laws studied in this paper. The non-Kerr law nonlinearities that are considered in this paper are power law, parabolic law as well as the dual-power law.
Citation
Anjan Biswas, Russell Kohl, Matthew Edwards, and Essaid Zerrad, "Soliton Parameter Dynamics in a Non-Kerr Law Media," Progress In Electromagnetics Research C, Vol. 1, 1-35, 2008.
doi:10.2528/PIERC07121707
References

1. Ablowitz, M. J. and H. Segur, Solitons and Inverse Scattering Transform, SIAM, 1981.

2. Akhmediev, N. N. and A. Ankiewicz, Solitons Nonlinear Pulses and Beams, Chapman and Hall, 1997.

3. Akhmediev, N. N., A. Ankiewicz, and R. Grimshaw, "Hamiltonian-versus-energy diagrams in soliton theory," Physical Review E, Vol. 59, No. 5, 6088-6096, 1999.
doi:10.1103/PhysRevE.59.6088

4. Biswas, A. and S. Konar, Introduction to Non-Kerr Law Optical Solitons, CRC Press, 2006.

5. Biswas, A., "new conserved quantity for non-Kerr law optical solitons,", Submitted.

6. Chu, S. T. and S. K. Chaudhuri, "Finite-difference timedomain method for optical waveguide analysis," Progress In Electromagnetics Research, Vol. 11, 255-300, 1995.

7. Gangwar, G., S. P. Singh, and N. Singh, "Soliton based optical communication," Progress In Electromagnetics Research, Vol. 74, 157-166, 2007.
doi:10.2528/PIER07050401

8. Ghafoori-Farad, H. and M. J. Moghimi, "Linear and nonlinear superimposed Bragg grating: A novel proposal for all optical multiwavelength filtering and switching ," Progress In Electromagnetics Research, Vol. 77, 243-266, 2007.
doi:10.2528/PIER07072903

9. Hasegawa, A. and F. D. Tappert, "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I. Anomalous dispersion," Applied Physics Letters, Vol. 23, 142-144, 1973.
doi:10.1063/1.1654836

10. Hasegawa, A. and F. D. Tappert, "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers II. Normal dispersion," Applied Physics Letters, Vol. 23, 142-144, 1973.
doi:10.1063/1.1654836

11. Hasegawa, A. and Y. Kodama, Solitons in Optical Communications, Oxford University Press, 1995.

12. Ikuno, H., S. Mori, and A. Yata, "Uniform asymptotic analysis of guided modes of graded-index optical fibers with even polynomial profile center cores," Progress In Electromagnetics Research, Vol. 13, 169-241, 1996.

13. Jana, S. and S. Konar, "Stable and quasi-stable spatio-temporal solitons in cubic quintic nonlinear media," Journal of Nonlinear Optical Physics and Materials, Vol. 13, No. 1, 25-36, 2004.
doi:10.1142/S0218863504001694

14. Jana, S. and S. Konar, "Tunable spectral switching in the far field with a chirped cosh-Gaussian pulse," Optics Communications, Vol. 267, No. 1, 24-31, 2006.
doi:10.1016/j.optcom.2006.06.013

15. Jana, S. and S. Konar, "A new family of Thirring type optical spatial solitons via electromagnetically induced transparency," Physics Letters A, Vol. 362, 5-6, 435–438, 2007.

16. Jovanoski, Z. and D. R. Rowland, "Variational analysis of solitary waves in a homogenous cubic-quintic nonlinear medium," Journal of Modern Optics , Vol. 48, No. 7, 1179-1193, 2001.

17. Kath, W. L., "A modified conservation law for the phase of the nonlinear Schrodinger soliton," Methods and Applications of Analysis, Vol. 4, No. 2, 141-155, 1997.
doi:10.1006/jmaa.1997.5307

18. Kivshar, Y. S. and B. A. Malomed, "Dynamics of solitons in nearly integrable systems," Rev. Mod. Phy., Vol. 61, 763-915, 1989.
doi:10.1103/RevModPhys.61.763

19. Konar, S. and S. Jana, "Linear and nonlinear propagation of sinh-Gaussian pulses in dispersive media possessing Kerr nonlinearity," Optics Communications, Vol. 236, No. 1-3, 7-20, 2004.
doi:10.1016/j.optcom.2004.03.012

20. Konar, S. and M. Mishra, "Effect of higher order nonlinearities on induced focussing and on the conversion of circular Gaussian laser beams into elliptic Gaussian laser beams," Journal of Optics A, Vol. 7, No. 10, 576-584, 2005.

21. Konar, S., S. Jana, and M. Mishra, "Induced focusing on all optical switching in cubic quintic nonlinear media," Optics Communications, Vol. 255, No. 1-3, 114-129, 2005.
doi:10.1016/j.optcom.2005.05.038

22. Konar , S. and S. Jana, "Nonlinear propagation of a mixture of TEM00 and TEM01 modes of a laser beam in a cubic quintic medium," Physica Scripta, Vol. 71, No. 11, 198-203, 2005.
doi:10.1238/Physica.Regular.071a00198

23. Konar, S., M. Mishra, and S. Jana, "Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic quintic nonlinear media ," Physics Letters A, Vol. 362, No. 5-6, 505-510, 2007.
doi:10.1016/j.physleta.2006.11.025

24. Kuila, P., A. Sinha, H. Bhowmik, and S. Mukhopadhyay, "Theoretical study of using an amplitude modulation scheme with an electro-optic modulator for generation of the proper power shape function of an optical soliton pulse in a nonlinear waveguide," Optical Engineering, Vol. 45, No. 4, 045002, 2006.
doi:10.1117/1.2190947

25. Kumar, D., P. K. Choudhury, and O. N. Singh-II, "Towards the dispersion relations for dielectric optical fibers with helical windings under slow- and fast-wave considerations — A comparitive analysis," Progress In Electromagnetics Research, Vol. 80, 409-420, 2008.
doi:10.2528/PIER07120302

26. Little, B. E. and W. P. Huang, "Coupled-modetheory for optical waveguides," Progress In Electromagnetics Research, Vol. 10, 217-270, 1995.

27. Mandal, P . and S. Mukhopadhyay, "Method of conducting an alloptical NAND logic operation controlled from a long distance ," Optical Engineering, Vol. 46, No. 3, 035009, 2007.
doi:10.1117/1.2714526

28. Mishra, M. and S. Konar, "High bit rate dense dispersion managed optical communication systems with distributed amplification," Progress In Electromagnetics Research, Vol. 78, 301-320, 2008.
doi:10.2528/PIER07091305

29. Mollenauer, L. F. and J. P. Gordon, Solitons in Optical Fibers, Elsevier Academic Press, 2006.

30. Narayanasamy, G., "Bright and dark solitary wave solution for higher order cubic NLS equation with cubic and quintic effects ," International Journal on Wireless and Optical Communications , Vol. 3, No. 1, 119-126, 2006.
doi:10.1142/S0219799506000417

31. Panajotovic, A., D. Milovic, and A. Biswas, "Influence of even order dispersion on soliton transmission quality with coherent interference ," Progress In Electromagnetics Research B, Vol. 3, 63-72, 2008.
doi:10.2528/PIERB07120404

32. Pandey, P . C., A. Mishra, and S. P. Ojha, "Modal dispersion characterestics of a single mode dielectric waveguide with a guiding region cross-section bounded by two involuted spirals ," Progress In Electromagnetics Research, Vol. 73, 1-13, 2007.
doi:10.2528/PIER07022702

33. Rahman, B. M. A., "Finite element analysis of optical waveguides," Progress In Electromagnetics Research, Vol. 10, 187-216, 1995 .

34. Rostami, A. and A. Andalib, "A principal investigation of the group velocity dispersion (GVD) profile for optimum dispersion compensation in optical fibers: A theoretical study," Progress In Electromagnetics Research, Vol. 75, 209-224, 2007.
doi:10.2528/PIER07060402

35. Roy, S. and S. Bhadra, "Study of pulse evolution and optical bistability under the influence of cubic-quintic nonlinearity and third order dispersion," Journal of Nonlinear Optical Physics and Materials, Vol. 16, No. 1, 119-135, 2007.
doi:10.1142/S0218863507003597

36. Shahoei, H., H. Ghafoori-Fard, and A. Rostami, "A novel design methodology of multiclad singlemode optical fiber for broadband optical networks," Progress In Electromagnetics Research, Vol. 80, 253-275, 2008.
doi:10.2528/PIER07111003

37. Sharma, A., "Collocation method for wave propagation through optical waveguiding structures," Progress In Electromagnetics Research, Vol. 11, 143-198, 1995.

38. Shwetanshumala, S. Jana and S. Konar, "Propagation of a mixture of modes of a laser beam in a medium with saturable nonlinearity ," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 65-77, 2006.
doi:10.1163/156939306775777422

39. Singh , S. P. and N. Singh, "Nonlinear effects in optical fibers: Origin, management and applications ," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.
doi:10.2528/PIER07040201

40. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research , Vol. 74, 379-405, 2007.
doi:10.2528/PIER07051102

41. Stern, M. S. , "Finite difference analysis of planar optical waveguides," Progress In Electromagnetics Research, Vol. 10, 123-186, 1995.

42. Singh, V., S. N. Maurya, B. Prasad, and S. P. Ojha, "Conducting sheath helical winding on the core-cladding interface of a lightguide having a Piet Hein super elliptical core cross-section and a standard optical fiber of circular cross-section — A comparitive modal analysis ," Progress In Electromagnetics Research , Vol. 59, 231-249, 2006.
doi:10.2528/PIER05100101

43. Wabnitz, S., Y. Kodama, and A. B. Aceves, "Control of optical soliton interactions," Optical Fiber Technology, Vol. 1, 187-217, 1995.
doi:10.1006/ofte.1995.1011

44. Zakharov, V. E. and E. A. Kuznetsov, "Optical solitons and quasisolitons," Journal of Experimental and Theoretical Physics , Vol. 86, No. 5, 1035-1046, 1998.
doi:10.1134/1.558551

45. Zhidkov, P. E., Korteweg-de Vries and Nonlinear Schrodinger Equations: Qualitative Theory, Springer Verlag, 2001.