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Abstract—The adiabatic parameter dynamics of non-Kerr law optical
solitons is obtained in this paper by the aid of soliton perturbation
theory. The various kinds of perturbation terms that arise exhaustively
in the context of optical solitons are considered in this paper. The new
conserved quantity is also used to obtain the adiabatic dynamics of
the soliton phase in all cases of non-Kerr laws studied in this paper.
The non-Kerr law nonlinearities that are considered in this paper are
power law, parabolic law as well as the dual-power law.
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1. INTRODUCTION

The theory of optical solitons is a very important area of research
for the last couple of decades [1-45]. The theoretical possibility of
existence of optical solitons in a dielectric dispersive fiber was first
predicted by Hasegawa and Tappert [9,10]. A couple of years later
Mollenauer et al. [29] successfully performed the famous experiment
to verify this prediction. Important characteristic properties of these
solitons are that they posses a localized waveform which remains
intact upon interaction with another soliton. Because of their
remarkable robustness, they attracted enormous interest in optical
and telecommunication community. At present optical solitons are
regarded as the natural data bits for transmission and processing
of information in future, and an important alternative for the next
generation of ultra high speed optical communication systems.

The fundamental mechanism of soliton formation namely the
balanced interplay of linear group velocity dispersion (GVD) and
nonlinearity induced self-phase modulation (SPM) is well understood.
In the pico second regime, the nonlinear evolution equation that takes
into account this interplay of GVD and SPM and which describes the
dynamics of soliton is the well known nonlinear Schrédinger’s equation
(NLSE). The NLSE, which is the ideal equation in an ideal Kerr media,
is in its original form found to be completely integrable by the method
of Inverse Scattering Transform (IST) [1-4] and profound success has
been achieved in the development of soliton theory in the framework
of the NLSE model.

However, communication grade optical fibers or as a matter of
fact any optical transmitting medium does posses finite attenuation
coefficient, thus optical loss is inevitable and the pulse is often
detoriated by this loss. Therefore, optical amplifiers have to be
employed to compensate for this loss. When the gain bandwidth of the
amplifier is comparable to the spectral width of the ultrashort optical
pulse, the frequency and intensity dependent gain must be considered.
Another hindrance to the stable propagation in a practical system
is the noise induced Gordon-Hauss timing jitter [11]. An important
aspect that has not been addressed with proper perspective is the fact
that due to its nonsaturable nature, Kerr nonlinearity is inadequate to
describe the soliton dynamics in the ultrahigh bit rate transmission.
For example, when transmission bit rate is very high, for soliton
formation the peak power of the incident field accordingly become
very large. On the other hand higher order nonlinearities may become
significant even at moderate intensities in certain materials such as
semiconductor doped glass fibers. Under circumstances, as mentioned
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above, non-Kerr law nonlinearities come into play changing essentially
the physical features of optical soliton propagation [4]. Therefore when
very high bit rate transmission or transmission through materials with
higher nonlinear coefficients are considered, it is necessary to take into
account higher order nonlinearities. This problem can be addressed by
incorporating the non-Kerr law nonlinearity in the NLSE.

It has been realized that the Gordon-Haus timing jitter can be
reduced by introducing bandpass filtering. Stabilization of soliton
propagation with the aid of nonlinear gain or under combined operation
of gain and saturable absorption was recommended by Kodama et
al. [11]. Thus, in order to model these features in the soliton
dynamics, from a practical standpoint, the NLSE should be modified
by incorporating additional terms. Thus, the concept of control
of soliton propagation described by the NLSE with non-Kerr law
nonlinearity is new and important developments in the application of
solitons for optical communication systems. Because the NLSE with
non-Kerr law is not integrable, perturbation methods or numerical
techniques have to be incorporated.

2. MATHEMATICAL ANALYSIS

The dimensionless form of NLSE with non-Kerr law nonlinearity is
given by

1
G+ 5 4e + F (la1*) a=o0. (1)

where x represents the nondimensional distance along the fiber while,
t represents time in dimensionless form. Equation (1) is a nonlinear
partial differential equation that is not integrable, in general. The
non-integrability is not necessarily related to the nonlinear term in it.
Also, in (1), F' is a real-valued algebraic function and it is necessary
to have the smoothness of the complex function F (|¢|?)q : C — C.
Considering the complex plane C' as a two-dimensional linear space
R?, the function F (]q\z) q is k times continuously differentiable, so
that [45]

F(lg?) g€ fj C* ((=n,n) x (=m, m); B?) (2)
m,n=1

The soliton solution of (1), although not integrable, is assumed to be
given in the form [5]

a(z,t) = A(t)g[B(t) {x — 2(t)}] 3)
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where
P(x,t) = —r(t)x + w(t)t + 0(1) (4)

In (3), A represents the amplitude of the soliton, B is the inverse width
of the soliton, Z(t) is the center position and g represents the functional
form of the soliton which depends on the type of nonlinearity that is
being considered. In (4), x is the frequency, w is the wave number and
0 is the phase. The soliton width and the amplitude are related as
B(t) = A(A(t)) where the functional form of A depends on the type
of nonlinearity in (1). Therefore, one can write

dz 0¢

at " " o 5)
Equation (1) has three integrals of motion [5] also known as the
conserved quantities. They are the energy (F) also known as the wave
power or Ly norm, linear momentum (M) and the Hamiltonian (H)
that are respectively given by

[e’s) 9 A2
B = / la” dz = —-102,0,0,00.00 (6)
7 00 . . A2
M= (0" qe — qq;) dx = —k—10,2,0,0,0,0,0,0 (7)
2 J_o B
[e’s) 1 9 I
H= [ Slal - [ Fede|ds
—0o0 0
A’B K2 A2

o) 1
= ——10,02,0,0000 + 19,2,0,0,0,0,0,0 —/ / F(s)dsdx (8)
2 2B —00J0

where the intensity I is given by I = |q|?. Here, the integral
Iy inang masns nenrns =
o0 dg\" (d2g\ " (d®g\ " (d*g\ " (d®g\"" (d°g
/ g <T)< 9) “9) (49 9\ o)
oo dr dr? dr3 drt drd drb

is defined for non-negative integers n; for 1 < j <8 with

7=B(t){z—z(t)} (10)

Besides these conserved quantities, the conserved quantity that governs
the conservation of phase is given by [5,17]

d [ X I B S T 4
2/ (qg; —q"at dw—E%/ r(qq,—q qx)dfv——/oo<§|qx| —CIQI>d9«“
(11)
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where )
. 2w1 (A, B)10,2,0,0,0,0,0,0 — 38710,0,2,0,0,0,0,0 (12)
2A2%16.4,0,0,0,0,0,0
when the wave number w(A, B) can be written as
12
w(A7B) :wl(A7B)_ 9 (13)

and the function w; is known only when the type of nonlinearity in (1)
is known. This conservation law provides the law of variation of the
soliton phase 6 that is defined in (4). For the soliton given by (3), the
parameters are now defined as follows [5]

i 20 (aqt — q*qz)dx i /°°

w(t) = & - Y gfqe)dr (14

(1) =5 = (qPd op ) (0~ Ca)de (14)
s x|q\2da: 1 [o© 9

I(t) = — 7 = —/ x|q|” dx (15)
f—oo |q|2dCC E —o0

Thus, the energy conservation, and the fact that B(t) = A(A(t)),
implies

dA dB
22 ) 16
dt dt (16)
Again the momentum conservation and relation (14) gives
dr
— =0 17
o (17)

Finally the conservation law of the phase given by (11) yields

do
=z 1
il (18)

Thus the relations given by (16)—(18) imply that the soliton amplitude,
width, frequency and the phase all stay constant and do not vary with
time during propagation down the fiber. Finally, differentiating both
sides of (15) with respect to time, yields

dx

which is also seen in (5).
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2.1. Perturbation Terms

The NLSE along with its perturbation terms that will be studied in
this paper is given by

1
iy + 5 oo + F (la*) a = ieRla,q" (20)
Here R is a spatio-differential or integro-differential operator while the
perturbation parameter € with 0 < € < 1 is called the relative width of
the spectrum that arises due to quasi-monochromaticity [4,11]. In
presence of the perturbation terms, the adiabatic dynamics of the
soliton parameters are given by [4]

dE o0
~ - e/ ("R + qR*) dz (21)
dM o0
=i [ (@GR-a.R)d (22
—:—[z/ (qu—qu)d:chn/ (¢ R+ qR*)dz| (23)
dt E —00 —0oQ
dz € [
e . * » 24
b= ﬁ+E/_OOx(qR+qR)dx (24)
de ie [ . s . s
Friaiy [(qR" = ¢"R) + 2 (z R" — ¢z R) da] du (25)
Equations (21)—(25) can be rewritten in the following alternative form
dE 2¢A [ ,
- — —i¢
i~ B ). g(T)R {Re } dr (26)
dM 2eA [ dg , :
- - = B2 —i| _ —i¢p 2
7 5 _Oo{ 7S {Re } kg(T)R [Re }}d’l’ (27)

dk 2ek A [° 4
v —i¢
7 BE ) .. g(T)R {Re } dr

2eA [ . dg .
¢ & i
+BE _Oo{mg(T)% {Re ] + BdT\s {Re }}dT (28)
dz 2¢A [ ;
= — = — _ —2(25

V= K+ BE ) zg(T)R {Re } dr (29)
d@ . GA o0 o~ _7/¢
& - B g(T)S [Re } dr

%‘; / T {BZ—Q% |[Re™| = rg()R [Re ™| } dr(30)

— 00 T
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Equations (21)—(25) gives the adiabatic variation of soliton parameters
while equations (26)—(30) gives the adiabatic dynamics of the same
soliton parameters in amplitude-phase format.

In this paper, the following perturbation terms that are
considered, are all exhaustively studied in the context of fiber optics
and optical solitons.

R = §1q]*" g+ aGs + Baze — Vauzs + A (laa) +0 (ld®)
+olal a—i€ (Pa;) —inada” —ica’ (¢) —in(la’)

x
—UXQrzzs — Wrerras + (Ulq + UQQx) / |Q|2d8 (31)
00

In (31), ¢ is the coefficient of nonlinear damping or amplification [5]
depending on its sign and m could be 0, 1, 2. For m = 0, ¢ is the
linear amplification or attenuation according to ¢ being positive or
negative. For m = 1, ¢ represents the two-photon absorption (or a
nonlinear gain if § > 0). If m = 2, § gives a higher order correction
(saturation or loss) to the nonlinear amplification-absorption. Also,
B is the bandpass filtering term [11]. In (31), A is the self-steepening
coefficient for short pulses [11] (typically < 100 femto seconds), v is
the higher order dispersion coefficient [11]. Here u is the coefficient
of Raman scattering [4,11] and « is the frequency separation between
the soliton carrier and the frequency at the peak of EDFA gain [6].
Moreover, p represents the coefficient of nonlinear dissipation induced
by Raman scattering [11]. The coefficients of £, n and ¢ arise due to
quasi-solitons [44]. The integro-differential perturbation terms with o
and oy are due to saturable amplifiers [11].

The coefficients of the higher order dispersion terms are
respectively given by 7, x and ¥. It is known that the NLSE, as
given by (1), does not give correct prediction for pulse widths smaller
than 1 picosecond. For example, in solid state solitary lasers, where
pulses as short as 10 femtoseconds are generated, the approximation
breaks down. Thus, quasi-monochromaticity is no longer valid and so
higher order dispersion terms come in. If the group velocity dispersion
is close to zero, one needs to consider the third and higher order
dispersion for performance enhancement along trans-oceanic and trans-
continental distances. Also, for short pulse widths where changes in
group velocity dispersion, within the spectral bandwidth of the signal,
cannot be neglected, one needs to take into account the presence of
higher order dispersion terms. This reasoning leads to the inclusion of
the fourth and sixth order dispersion terms that are respectively given
by the coefficients of x and 1.
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For the perturbation terms given by (31), the adiabatic parameter
dynamics is given by

dE  eA?
dt B2
+/€210,2,0,0,0,o,0,0) —2pA*B (3210,2,2,0,0,0,0,0 + /‘6210,4,0,0,0,0,0,0)

oo T 0o 2/ r7
+201A2/ 92</ g2d7'1)d7'+02A2{Bz/ <§z) (/ g2d71)d7'
(e} T
o [ ([ an) ar} @)

aM ek A2
dt B2
+/€2-70,2,0,0,0,0,0,0) —2pA*B (3210,2,2,0,0,0,0,0 + 5210,4,0,0,0,0,0,0)

00 T 00 2/ pr
+201A2/ 92(/ g2d7'1> dr+ 09 A? {Bz/ ((jg) (/ g2d71> dr
—o0 —o0 —oco\ aT —o0
[o/¢] T
42 / g ( / g2d7'1> dTH (33)

dk €

it =3 S—— {2514333([01010000—-700200000)
dt BI07270’070,07070 1Yy LUy Uhly sy &y Uy Uy Uyl

. 0 7 2/ o1
—4MA23310,2,2,0,0,0,0,0—amA2{BQ/ (d_g) (/ 92d71> dr
—co \dT o0

+r2 /O:O g° (/Too 92d71> dTH (34)

do €A?
E = —@ [2/@4232(0 + 3)\)[0,4’0,070,070,0

2 2 2
+4vxB (23 Io02,00000+ K 10,2,0,070,070,0)

2 12 2 2
+{A°B (43 192,2,0,0,0,00 — 96710,4,0,0,0,0,0,0

2 2
[25/1 " B1o,2m+2,0,0,0,0,0,0 — 208 (B 15,0,2,0,0,0,0,0

2 2
{2514 " Blo,2m+2,0,0,0,0,0,0 — 208 (B 15,0,2,0,0,0,0,0

2 2
+4B°1121,1,0,00,0 + 8B 11,1,3,0,0,0,0,0)
A2B?%(4B?1, —5K21, AB%T
+n 0,2,2,0,0,0,0,0 — 9K~ 10,4,0,0,0,0,0,0 + 1,1,3,0,0,0,0,0
4¢C A% B? (3K71, — 4B?],
+ C K 0,4,0,0,0,0,0,0 0,2,2,0,0,0,0,0

2 2 2 4
—2B°1121,1,00,0,0 — 2B 11,1,3,0,0,0,0,0) +xB (63 19,0,0,2,0,0,0,0
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2 42 2 p2
+61°A%10 4,0,0,0,0,0,0 + 295" B 10,0,0,2,0,0,0,0)

2 6 452
—2YkB (33 15,0,0,0,2,0,0,0 + 276" B 10,0,2,0,0,0,0,0

2 pd 352 4
+276°B"10,0,0,2,0,0,0,0 — 185 B“1p 0,2,0,0,0,0,0 + 3K 10,2,0,0,0,0,0,0)

_4oyrA? / © () ( / ’ g2(s)ds) dT] (35)

— 0o — 0o
while the velocity change is given by

dz €
V= —=—Kk+——[20]1,1,1,0,0,0,0,0
dt 19,2,0,0,0,0,0,0

+2A2 (3)\ + 260 + 26k — 21K — 8pl€) 1173717071707070
—4pk (33411,170,07010,1,0 — 1032:‘?2[1,1,0,0,1,0,0,0 - 541171,1,0,070,0,0)

2 2 2
—2y (B 11,1,0,0,1,0,00 — 3K I1,1,1,0,0,0,0,0> — 8xK (B 11,1,0,0,1,0,0,0

2 A2 00 T
*52-[1,1,1,0,0,0,0,0) + ﬁ {O’l/ 7-292 </ g2d7'1) dr

o0 —00

+o09B /O:O TgZ—i (/TOO g2d7'1> dTH (36)

These relations will now be applied to four laws of nonlinearity for F'(s)
in the following sections. They are Kerr law, power law, parabolic law
and dual-power law. The explicit adiabatic parameter dynamics will
now be obtained in these four cases of nonlinearity.

3. KERR LAW

The Kerr law of nonlinearity originates from the fact that a light wave
in an optical fiber faces nonlinear responses. Even though the nonlinear
responses are extremely weak, their effects appear in various ways
over long distance of propagation that is measured in terms of light
wavelength. The origin of nonlinear response is related to the non-
harmonic motion of bound electrons under the influence of an applied
field. As a result the Fourier amplitude of the induced polarization
from the electric dipoles is not linear in the electric field, but involves
higher terms in electric field amplitude [1-11].
For Kerr law, F(s) = s. Thus, the NLSE modifies to

. 1
1qs + EQxx + |Q\2q =0 (37)
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This case, as mentioned before, is integrable by the IST [1,2]. The
form of the soliton is given by

A

_ i(—kz+wt+0)
1) = B =) (38)
where
K= —v (39)
and ) )
W= BT_FL (40)
while
A=20B (41)

In the Kerr law case, however, there are infinitely many integrals of
motion. The first three integrals of motion that matches with those of
the NLSE are respectively

E = / lg|*dz = 2A (42)
M = %/ (9q; — " qz)dr = —2KA (43)
_ 1 > 2 4 _ 2 2 2
= 5 | (e = lal")de = 4 (382 - 42) (44)

The fourth conserved quantity for Kerr law nonlinearity is given
by [5,12]

d .
2/ (9qf — ¢ q1) dz — 2dt/ r(qq, — q"qz) dx

=5 [ (0P -1 s

(45)

3.1. Perturbation Terms

In presence of perturbation terms, the NLSE with Kerr law
nonlinearity is given by

1 .
“Qrx T |Q‘2q =ieR (46)

iQt+2
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Thus, the adiabatic parameter dynamics of the solitons with Kerr law
nonlinearity are given by [4]

dA dB € [

-/ - = _ - * * 4
pn g 2/_Oo(q R+ qR")dx (47)
dk €

o0 o
agi [z/_oo(qu—qu o —r [~ (¢ R+qR)da) (49)

For the perturbation terms given by (31), the adiabatic parameter
dynamics of the soliton is
E 2¢A
b _ 2eA [155A2m3< m—l—l)
dt
~103 (A2+4352) —4pA%(A24552) +104 (301 —024)]  (49)

M 2ek A
arr_ - 2er {155/127“3( m+1)

dt 15

—105(A2+3/<¢ )—4pA2 (A2+5n2)+10A (301—02/1)] (50)
dA dB EA 2m
-2 [15&4 B( m+1)

10 (A2 + 352) —4pA? (A% + 547) +104 (301 — 02 4)|  (51)

dk €A2

o=~ (105028 - 02) 4 8uA’] (52)
% = —¢ {g’YIiA (2A2 + 3%2) + glﬁAg (0 +3X)
§£ (Az 75 ) ‘;3 (A2 _ 15/12) + 4C5Ag (A2 _ 5n2)
+% (4242 + 20552) - 01]/;544
»A

o (155A6 +315k% A% + 4412 A* — 210K3 A2 + 105&4)} (53)

where in (49)—(51), B(l,m) is the beta function. The change in the
velocity of the Kerr law soliton is given by

v o= —n—g{3a—|—9’yn2—|—A2(3)\—|—29—|—3’y)—2/£A2(§—|—T)A+4C)

—3A4 (201 + o) +12xk (A2 + #2) + 6yr (T4 + 36%) | (54)
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4. POWER LAW

The power law nonlinearity arises in various materials, including
semiconductors. Moreover, this law of nonlinearity arises in nonlinear
plasmas that solves the problem of small K-condensation in weak
turbulence theory [1-4]. In this case, F(s) = s” so that the NLSE
is ]

5%& + |q’2pq =0 (55)
In (55), it is necessary to have 0 < p < 2 to prevent wave collapse [1, 5]
and, in particular, p # 2 to avoid self-focussing singularity [1]. The
soliton solution of (55) is given by [1, 3, 4]

iqt +

q(‘r7 t) _ . A 6i(—na:+wt+0) (56)

cosh? [B(z — Z(t))]

where
K= —v (57)
B2 K2
2\ 3
2

B:A”(l_{p) (59)

The three integrals of motion, in this case, are respectively given

by [1, 5]
E = / lq|?dx = <1 ;) (60)

. . kA2 711
M = 5/_ ("¢ — qq3)dr = ——-B (—, —) (61)

B 2'p
H= / [ Iq 2 L e

[2p(p+ D (p+204B2(p+1) - 4pA2p}B@ ;) (62)

dx

2Bp(p+ 1)(p+2)

For power law nonlinearity, the fourth conserved quantity is given as

id [ ..
2/ (997 — ¢ qt dx_i%/ v (qqy — ¢"qz) dx

= [ (Gl - 2l e (63)
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4.1. Perturbation Terms

In presence of perturbation terms, the NLSE, with power law
nonlinearity, is given by

. 1 .

i+ 5 + a|g = i€Rlg, ¢"] (64)
The adiabatic parameter dynamics, in presence of perturbation terms
are [5]

pfl

dA ear! 2p ~ .
@ 2 p)B(L,1) (1+p> LRy ()
dB BT 22 \P [ N
@~ @ pE(LD) <1+p> | @r+aryiz (60)

p—2 1
dr eB v 2p% \” o0
— = ' +R—q.R)d
dt B(; 1) <1+p> {Z/oo(qm %R )
’p
i / ('R + qR*)dac] (67)
As stated before, p # 2, it is clearly seen in (65) and (66), that this

restriction is a valid one. The adiabatic parameter dynamics of the
power law solitons, due to perturbation terms, is given by

dE _ 2¢A? <P+1>21 [2éBA2mB(1 —mH)

dt B2 2p?
26B
_pi(pﬁ-l- %) (B2 + H2p2 + 4K p ( )
2pBA?
_pi(/;)—l—él) (B2+/<cp +4/<cp ( )
ds

s 1 s ds
e ( [ )
—00 coghr s \/—o° COShP s1
o9 A’ B? [ /@'sz—i-l p2 s dsq
+—3 3 Ty ———5— |ds| (68)
p - coshp s  coshr —oocosh? s;
dM 2ekA% (p+1 omn (1 m—+1
e (2 ) s (5:)

298 (st yantg) o (1)
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B 2pBA?
p(p+4)

(o, ¢] 1 S
420 A / i ( / di‘slj) ds
—o0 coshr s \Y—% cosh? s

09 A’B? [ [ k2p?+1 p? s ds1
R | M LA K )
p —oo\ coshr s coshr ' " s —oocoshr s

(32 + /12p2 + 4/<52p) B (%, g

p—1
p+1 2 2p
A _ ‘ A <2p ) [25BA2’”B(1 —m“)
dt (2 p)B(l 1) B2 \p+1 2" p
23B 5 9 (1 1)
— B+ +4 B
p(p+2)( p Rp) 2'p
20A%B /o, (1 2)
— B* + +4 B, =
p(p+4)( < Hp) 2 p

(o @] 1 S
420 A / i ( / di‘(”;) ds
—o0 coshr s \Y—% cosh? s

A232 00 2,2 1 2 s d
+ 222 ] (’”’i - )(/ M (70)
p —oo\ cosh? s cosh? s — coshr s1

2p—1
2p 2\ "z
o2 () fmaen (5
dt (2 p)B(§ )B p+1 AN
2B /o 11
— B? + k% 4+ 4K%p B( >
p(p +2) ) 2'p
2pA%B /_, (1 2)
- B? + k*p* + 4x%p) B
p(p+4)( < Hp) 2'p

[o.¢] 1 S d
20, A2 / i ( / %) ds
—o0 coghr s \Y—% cosh? s
o9 A’ B? [ /€2p2+1 p2 s dsq
+ 22 ] ( . - | =S as| )
p —00 coshp s  coshr —o0 cosh? $1
p=2 4
d_/i _ eB »r 2p ﬁ BAB(l 1>+4,U,A BB<1,2)
dt (_ ) p+1 2'p) plp+4) \2'p

At 2241 2 s d
0’2% / (H P+ D . )(/ 51 )dS] (72)
coshp s (:oshp+ —0o0 coshﬁ S1
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do Yk A? 5 N 11\ kaA? 12
— =—¢|—"— 9B Nr2IB( =~ 1z
dt Gpr@+2>{ 2B (5, )+ 5 0r+01B(5 )

+4Bp(pj-f;(p+4) {BX(p-2)-5n p(p+2)(p+4)}3<;,;>

+4Bp(p7f;(p+4) {32(3]9—1—2)—5/@2p(p+2)(p+4)}3(%, %)

+4Bp(p?f‘;;(p+ y {BYp+2) — w*p(p+2)(p+4)} B (% %)

e f‘;‘jgp 7 {6B2(4p +3) + 35x%p(3p + 2) } B <; ]13)
xA?

9B (p+2)(3p+ 2)(5p + 2) {3ff2p6(p +2)(3p + 2)(5p + 2)

—18x*B*p° (3p + 2)(5p + 2) + 27k*B*p* (4p + 3) (5p + 2)
+276*B*p° (3p + 2) (5p + 2)

12
3B6 (16p6 1 64p° + 60p* + 15p3 — 30p% — 32p — 8) } B (5, _)
p

At oo s d
+ 2 - ( / S ) ds] (73)
B —00 cosh? s \/—> coshr s1

The change in the velocity of the perturbed soliton is given by

i G ()
s

? 12
— (3)\+29—2§/<c— 2nk — 8pk) B (2, )
p

Axr 2 2 2 2 (1 1)
T3 L 9) 2) (B*—kr“) —4B nip(= =
ﬁ@+%{p@+)( W) 4B o+ D} B (5
dykB? _ (1 2 2 11
SR8 (3,) o (et wamt—a0emt) B (5 )
4k B 11
—m{wp%ﬁ?p(pﬁ)— (4p3+4p2+3p+4)}B (5, 5)
244k B* 12
——————(p+ 1)1 i
A+ D13 DB (5.
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201./42 oo 1 s d81
TR / 2 / 2 ds
—o0 coshr s \Y—% coshr s

209A% [ stanhs s dsi
—_— 4
= ( /_ ds (74)

2 2
—o0 cosh? s o coshr s1

5. PARABOLIC LAW

For the parabolic law, F(s) = s + vs?> where v is a constant. This
law is for constant v is also known as the cubic-quintic nonlinearity.
The term with v is large for the case of p-toluene sulfonate crystals.
It arises in the nonlinear interaction between Langmuir waves and
electrons and describes the nonlinear interaction between the high
frequency Langmuir waves and the ion-acoustic waves by pondermotive
forces [4, 16].

There was little attention paid to the propagation of optical
beams in the fifth order nonlinear media, since no analytic solutions
were known and it seemed that chances of finding any material with
significant fifth order term was slim. However, recent developments
have rekindled interest in this area. The optical susceptibility
of CdSxSe;_x-doped glasses was experimentally shown to have
a considerable y®), the fifth order susceptibility. It was also
demonstrated that there exists a significant x(® nonlinearity effect in
a transparent glass in intense femtosecond pulses at 620 nm [4, 16].

It is necessary to consider nonlinearities higher than the third
order to obtain some knowledge of the diameter of the self-trapping
beam. It was recognized in 1960s and 70s that saturation of the
nonlinear refractive index plays a fundamental role in the self-trapping
phenomenon. Higher order nonlinearities arise by retaining the higher
order terms in the nonlinear polarization tensor [16].

The form of the NLSE here is

. 1
ige + a0 + (la* + v lal*) g =0 (75)

The solution of (67) is now written as [2, 13]

A

qlz,t) = pellmrEttto) (76)
[1 4+ acosh{B(x — z(t))}]?
where
K= —v (77)
A% g2
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B =24 (79)

4
= 1+ gva? (80)

For the soliton given by (76), the corresponding integrals of motion are

3 a—1 1
E = 2 ——Fll—-—Bl— 1
/ aPde = 2P (115 2@) (13)

7 kA2 3 a—1 1
= — =———F —: Bl1l, =
(

and
o T1 1 v
- / 510l = lalt - —rq\G] da
s [ (30,5050 8 (15
2
3a—1 1
6ra’F (1,1 B(1,=
thka ( "9 2a> (2)
a—

—3aF<2 2, 2 > 1)3( ;) VALF (3 3, ; “2 1)3(3, %)}(83)

where in (81)—(83), F'(a, 3;7; z) is the Gauss’ hypergeometric function.
The fourth conserved quantity for the parabolic law nonlinearity is
given as

d * *
2/ (qqf — q¢"qr) dx — th/ z(qq; — ¢"qz) dz

= 7 (Sl - rlgl*) (84)
r (355 <7 Jrlinge)

(85)

5.1. Perturbation Terms

In presence of perturbation terms, the NLSE, with parabolic law
nonlinearity, is given by

: 1 . «
ige + 5400 + (g + vlgl*) g = ieRlg. ¢"] (86)
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The adiabatic parameter dynamics of the solitons with parabolic law
nonlinearity is

dA 2\/§ o * *

B _ ea2/ ("R + qR")dx (88)
dt —00

iV [z/_oo(qu— qzR")dx n/_oo(q R+ qR")dx| (89)

Here, the adiabatic variation of the soliton energy and linear
momentum are given by [4]

(b e (1))
dt 4a 2" 2a 2
[25A2m+1

3 a—1 1
F(m—I—l,m—}—l,m—l——;a—)B(m—i—l,—)
2" 2a 2

-1 -1 1
—48aA3 <3 1, 5,“—)3 <1, 3> 26k aAF< 12, a—)B(l,—)
2’ 24 2 '2" 24 2
1 1 1
—2pA5F<4, 9 L. a>B<2, 3) —,OI<L2A3F<2, 2,2, a)B(Q, >
'27 24 2 2’ 24 2
1 s ds
2 42 1
A L EE S
—1—01\/_@ / 1+ acoshs (/_Oo 1 + a cosh 31> 5
dsy >

3 .3 sinh s /5 }
Cooadad [T sinhs L S
724 / (1 4 acosh s)? ( — 1 4+ acosh sy ° (90)

B (5 ) s (1))
dt da 2a 2

25A2m+1 3 1 1
F(m—|—1m+1m+ 7a )B(m—i—l,—)
2" 2a 2

2mam—1

5 a—1 3 3 a—1 1
—4BaA%F( 3,1 B(1,Z)-2 AF(1,1,5;—=B(1, =
ba (3’ "2 2a ) <2) fra ( "2 2a> <2>
—2,0A5F(42 Taz 1)B(Q,§>—pnzA3F<22 0. a” 1)3(2,1>
2’9 2 2" 2 2
1 s ds
2 42 1
A S 1 )y
o120 / 1+ acoshs (/_ool+acosh51) iy

3 .3 sinh s </S dsy > ]
— A — —]d 91
o2 / (1+acoshs)? \/_ 1+ acoshs; § (91)

2mam—1
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Now, the adiabatic variation of the soliton amplitude, width and
frequency, on using (87)—(89) are given by

dA € [256A%2m ] 3 a—1 1
g puaahi— 2 1 1 =~ B 1, =
7 2[ <m+ ,m 4+ ,m+2, % ) (m—i— ,2>

5 a—1 3 3 a—1 1

—4BaAF (3,1, ——\B(1,2)-2 AF(1 B(1, =
/80’ (37 727 20, ) (72> ﬁH a (7 72 2 ) (72)

7 a—1 3 5 a—1 1

o 5 Loy i 2 43 e -
2pA F(4,2,2, o >B<2,2> prZA F(2,2,2, o )B(2,2>

comatat [T ([,
1+ acoshs \J_ 1—|—acosh51

2mamfl

3,3 [ sinh s /5 ) }
_ A S d 92
724 [oo (1+acoshs)2< 1—|—acoshsl s (92)
dB  eV2 [204%™H a—1
Vbt 1, m,
it~ 2 [2mam—1 < FLmd g 2’ Qa) ( )
a

5 a—1 3 3
—43aA3F (3,1 B(1,Z)-2 AF(1,1,5;, —=
g (3”22)(’2) fra ( 2 a)( )
—2pA°F (4 2,1 a_1>B<2,§>—p/{2A3F (2 2,2, 1)3(2, )
"9 2q 2 '’ 2a 2
1 s ds
2 42 1
A S S
+o1v2a / 14 acoshs (/_oo 1+ acosh51> s

[e.0] S
A3 sinh s </ dsq )d ] 93
724 Loo (I1+acoshs)? \J_o 1+ acoshs; y (93)

and

dk €

dw _ [2
dt F(1,1,3 4= 1)3(1,1>
2" 2a 2

—9V2BkaAF (3, 1, §; “—_1> B (1, §>
2a 2

—2V2BKAF (2 2, g a;;) B (2, ;)

7 a—1 3
Vo A3F (4, 2, L. "’—> B (2, _>
2’ 24 2

3 [ sinh s /s dsi )d }
_ " R — 94
a2ha /_oo (14 acosh s)? ( —oo 1 +acosh s; y (94)

) ) 2 2

fﬁmAF< 3.4z 1)3(1,1>
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%_—G;REQ{ (3,1, ,“2a1 B(l,g)+2 2F(, ; a2 1)3(1,%)}
At —1
_6“ =B+ o)F ( Z,GQG )B( )
4
_7222143 [96 "BF ( ’;’aml) ( )
—96a%K2F <2 2, 2 “2a1) B <2, ;)
32{24 2F(Q 2,2 a2 1)3(2,2) 8a ( 3, L C‘Q—;)B(?,, %)
1
9(a —I)F( g “2a )B( )}
1 1
Flaagitg)s(a3)

+2BQ{3(a —1
7a 1 1 7 a—1 1
16aF (3,3, = B(3,=)—24a’F (2,2, - —— | B(2, =
iba ( > 3’2) < 9 2a> (2>H
enA* [ 21592 ( 7a—1> ( 3)
- B2F (4,2 2
76841 |07 255, ) B %3

—480a°K>F (2 2, = 1) B ( >
2a
B

)
"2’
4,

9a—1 1
B2 21 F<44 —> (4-)
+ {3(“ ) o oy )

7 a—1 1 7 a—1 1
16aF (3,3, - B(3,-)—24a?F (2,2, —: — =) B(2, -
iba ( "2 2a ) (2) crB e 2a) (2)}}

€ 2 252 ( 5 a— 1) ( 1)
- 1152a%K%*B%F (2,2 B2 =
768a4B[ an 99 o "9
—384 2B2F< 7, >B<2
“ 2% D)
5
2

-1
2B%{24a*F (2 2, )
+ { ¢ "2’ 24

7 a—1 1 9 a—1 1
—8aF B(3,Z)— — -
8a (3 3, - ) 3, 2) 9(a 1)F(44 Sy >B<4, 2)}
—232{ a —1 (4,4, )B(4,%)

a—1
"2 2a 2
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—36211;1; {334 {4a2F (1, 1, g a2a1> B (1, %)
—4F(22 Z “2a1>3(2,%>+F< 2a1) (3%)
—12a2F<3,1,5,a2a1>B< g)+6aF<4 2, L ,a2a1>3<2,;’>
+9a2F<5,1,7 4= 1) (1,5 }+24a,<1 <, g a1 1>
5 a—1 3
158a2K2B2F (3,1,5, “2 )B (1 5)}
1%;323 {3B6{196a2F <3,1,, ) ( 2)
—|—81F<5 3, g "’2 1)3(3 ;’) 225a2F<7 g 2a1)B 1%)
—252@F(4,2,; @ 1) < >+420a2F<5 g,a;1>B
) (23)})

2
1 1
+108ax2B* {4a ( ,3,a )B(l >
2" 2a 2
a-1

Sy

N————
Sy
R

b

—270aF (6 2, -

i (pag ) By e e (g ()
—12a2F( 2 B(l, >+6aF( ;“2 ) ( Z)
+9a2F(5 1,+ 7 - 1) ( 5>}+432a2B2 4F<3 ; “2 ) ( )
+6aF<4,2,;;a2a1) ( >+9 2F<5,1, > < 2)}

co kA /Oo (/ dsq )
——|d 95
+ B3 _Ool—i—acoshs —o0 1+ acoshs; 5 (95)

Also, the change in velocity of the perturbed soliton, due to parabolic
law nonlinearity, in presence of such perturbation terms, is given by

€

v = —K—
4a2F <1’ 1, §; a_—l) B (1’ 1)
2" 2a 2

-1 1
[(a + 37/12) 4d*F (1, 1, g; a2a ) B (1, 5)
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5 a—1 3
167a2A%F <3, 1,2.2 ) B (1, )

2’ 2a 2
2 5 a—1 1
+aA® (BN + 20 + 26k — 2nk — 8pk) F' ( 2,2, —; B(2,=
2" 24 2
5 a—1 1
—16vraA’F (2.2, ——=\B (2, =
vate (2250 (2.1)
5 a—1 3
—4 2A2F (3,1, =: B(1,=
it (31,50 1) (1.3)
3 a—1 1
2 2 2 . _
+16xka (,s 124 )F<1,1,2,2a >B<1,2>
3 a—1 1
_ 2 3 2 4 2. -
81[}/@@/1(4514 +20/~€A—|—I€)F<1,1,2, o >B<1,2)
5 a—1 1
A% (5142 + 102 F (2,2, 2:—— ) B(2 =
+8yrad® (514 + 1087) F (2,2, 037 5
+8tpra’ A2 (186A2+25/<;2)F(31 §-“_1)3(1 §)
"9 9 '
7 a—1 1
— 114K A*F — B(3, =
o (3,3,2, 2a> (3,2)
7 a—1 3
-1 A*F (4,2, —:—— B2, =
008¢a ( e 2@) (2)
7 a—1 3
—1134ka’A*F (5,1, - —— | B(2,=
stvna® AP (5,152 ) B (2 )

4 a?’/Oo 5 (/S dsi )ds
e - vt
! —oo 1+ acoshs \J_« 1+ acosh sy

+4VBosaP A /Z . ssinh s ( / dsy )Cl} (96)

+ acoshs)? \J_ 1+ acosh s;

6. DUAL-POWER LAW

This model is used to describe the saturation of the nonlinear refractive
index. Also, this serves as a basic model to describe the solitons in
photovoltaic-photorefractive materials such as LiNbOs. In this case,
F(s) = sP+vs% so that the NLSE with dual-power law of nonlinearity
is given by [4]

1
ige + 5400+ (Ja +v1al"”) g =0 (97)
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Equation (97) supports solitary waves of the form [4]

q(m,t) — A . ei(fmt+wt+0) (98)
[1+4 bcosh{B (x — z(t))}]?r
where
K= —v (99)
A% K2
w:2p—|—2_7 (100)
1
2p? \ %
B = P(lip> (101)
B2 (1 2
:\/1+”22(1:[729) (102)
p p
For the dual-power law case, solitons exist for
2p? 1+ 2p
—ﬁm <vr<O0 (103)

In this case, the integrals of motion are

o0 2A2 111 1b6-1 11
B[ laPae = p (0 g PR B(55) o)
—o0 B2rbr pp2 p 2 p 2
y oo

20br
i . 2k A2 111 1b-1 11
M=3 (99:—q qx)dl’:—llF(,;Jr; >B<,)
2 J- B2prbr pp2 p 2 p 2
(105)
and
> 1 g gt
H = P — d
/_ool2|qu p+1 opt1|™
A2 B 13 1b-1
gl w0
2vpr L4P? p2 p

1
+
p’
111 1b6-1
—F 4.2 -
B (pp2+p 26) ( )
b—
_|_ -

A?P 1 13 1 p+1 1
_7F 1 p 1+_7_+_’ > <—’_>
Bb(p+1) ( p p2 2b p 2
v AP 1 15 1 b—1 2p+1 1
- F(24-,24— -4+ —|B(ZF—., 2 )| (1
2Bb*(2p+1) <+ Tpiaty b) ( P 2)} (106)
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For dual-power law nonlinearity, the fourth conserved quantity is given
as
/ (a9 — ¢"qr) dw — —i/ z(qq, — 4" qz) dx
2 2dt v

_ _/ ( ‘qx|2—62‘q|4> dx (107)
Cy =

where co is given by
1 113b1 13 111 1b—1\_/11
3aF (=42, = B Fl(>, = =+ 2—2\B(-,=
¢ (p Ty 2b) ( 2)“’ (p’p '3 > (p’z)
b—1 I

1 1 1 3 1
DF(=+1-41.-+2"—_"\B 1=
(p+) <p+’p+’p+2’ 2b> (p+’2)

(108)

6.1. Perturbation Terms

In presence of perturbation terms, the NLSE with dual-power law
nonlinearity is given by

. 1 . X
ige + 5400+ (Ja” + vlal"”) g = icRlg, ¢" (109)
The parameter dynamics is now given by

dA T 1\ [

€ p P * *
= = d 11
= () [ @R aR) (110)
dB € [
—_— = = * “\d 111
=1 @R+aR) (1)
drk €

ar _ € |; ‘R RYdr —k | (" * 112
o E[Z/oo(qu gz R")dx H/m(qRJqu)dﬂ:} (112)

where E is the energy given by (104) while
1

I - [(b 1)(2p+ 1)} ’ g (1’ 1)

2v(1+p) 2 p

202 (p+1)3 (1 11 1 1—b)
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2v (p+1)>
b (b—1)2(p+2)(2p+ 1) (
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The adiabatic dynamics of energy and linear momentum for dual-power
law solitons are given by

E 2 —p)A2-n /q 111 1b-1 11
B () e (1) ()
dt 27 br L 2p? ppp 2 2 p 2
45 A2m+2 m+1 m+1 m—+1 1 b—1 m+1 1
rEsmTEs ) ) +53 B , =
2% b P P p 2 2b p 2
2 _
L g (Lea Ll BTy (L 0)
25 b P 2" 2 p’ 2
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—_Fl(Z 4+ . _\B(Z.Z
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B

p
[
B? (1+bc0sh5)% 1+ bcosh sy
_02A4b o0 sinh s /3 dsy ds| (114)
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dt 2T br L 2p ppp 2 2 p 2
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b
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m—+1 MF 9 b +§) 2b B ’5
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201A4 o0 1 s d81
T / I / 1+ beoshs; ) &
—o¢ (14 bcoshs)r \/—oo L +-bcoshs

Alp oo inh s
) b sinh s 1 1/ dsy Lasl (1)
PB J—co(14bcoshs)r ™ |/=o¢ (1+bcosh sy)?

Now, the adiabatic parameter dynamics of the soliton amplitude, width
and frequency are respectively given by [4, 5]

dA e <p+ 1)21p
dt  pLAp=1 \ 2p?
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222 1b-1 21
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Finally, the velocity change for solitons with dual-power law, in
presence of such perturbations, is given by
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7. CONCLUSIONS

This paper studied the non-Kerr law solitons in presence of
perturbation terms by the aid of soliton perturbation theory (SPT).
The adiabatic parameter dynamics was obtained by using this theory.
The fourth conservation law, that is not so widely known, is also put to
use in this paper to obtain the adiabatic variation of the phase of the
soliton. Thus one can conclude that SPT is complete in the sense that
the dynamics of all the soliton parameters can be laid down. Until the
fourth conserved quantity was known, one had to resort to variational
principle, particularly to get the dynamics of the soliton phase. Not any
more! Thus SPT, from now on, is totally an independent technique,
to study its parameter dynamics.

The parameter dynamics will be later on used to study the further
issues of optical solitons. They include the collision induced frequency
and timing jitter, amplitude jitter, four-wave mixing, intra-channel
interaction of solitons and other such phenomena.
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