Miniaturized Modified Dipoles Antenna for WLAN Applications
Yuan Yuan Guo
,
Xiao-Miao Zhang
,
Gao-Li Ning
,
Dan Zhao
,
Xi Wang Dai
and
Qi Wu
In this paper, a novel double-band integrated antenna for applications in WLAN is presented and studied. Based on the mature dipole theory, radiation elements are printed on the two faces of a low cost FR4 substrate. The two dipoles are designed on the sides of the feedline, which can reduce the impact of each other availably. The distance between the two arms and the width of the arms plays an important role in improving the impedance matching. Furthermore, by folding the arms efficiently, the current distribution of the proposed antenna is extended, and the dimensions of the proposed antenna can be reduced. The size of the designed antenna is just 34mm×24mm×1mm (about 0.27λ×0.19λ×0.008λ, λ is the wavelength relative to the frequency 2.4 GHz). Moreover, the prototype of the antenna is constructed and tested, which shows a good agreement with simulated result. The measured bandwidths, ranging from 2.35 GHz to 2.61 GHz and from 4.7 GHz to 6.0 GHz respectively, are obtained with return loss less than -9.54 dB (about 2:1 VSWR). The proposed antenna covers 2.4/5 GHz WLAN bands, and radiation patterns with good omni- directional radiation in the operating frequency are observed.