Vol. 24
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-06-07
Design of Folded Wire Loaded Antennas Using BI-Swarm Differential Evolution
By
Progress In Electromagnetics Research Letters, Vol. 24, 91-98, 2011
Abstract
Folded wire load antennas with matching network are designed by using optimization algorithms. The loads are parallel capacitor/inductor/resistor circuits that are adjusted by means of Differential Evolution (DE) optimizers to maximize bandwidth and the matching networks. The measured voltage standing-wave ratio (VSWR) of the load folded dipoles confirms broadband performance and agrees with data obtained from moment method computations. Antennas having bandwidth ratio of 2.5 : 1, with measured VSWR less than 3.5, meets the requirement.
Citation
Jian-Ying Li, and Yu Yu Kyi, "Design of Folded Wire Loaded Antennas Using BI-Swarm Differential Evolution," Progress In Electromagnetics Research Letters, Vol. 24, 91-98, 2011.
doi:10.2528/PIERL11032507
References

1. Bahr, M., A. Boag, E. Michielssen, and R. Mittra, "Design of ultra broad-band loaded monopole antennas," Proc. IEEE AP-S Int. Symp., 1290-1293, Seattle, WA, Jun. 1994.

2. Boag, A., A. Boag, E. Michielssen, and R. Mittra, "Design electrically loaded antennas using genetic algorithms," IEEE Trans. Antennas Propagat., Vol. 44, No. 5, May 1996.
doi:10.1109/8.496255

3. Rogers, S. D., M. Butler, and Q. Martin, "Design and realization of GA-optimized wire monopole and matching network with 20 : 1 bandwidth," IEEE Trans. Antennas Propagat., Vol. 51, 493-502, Mar. 2003.
doi:10.1109/TAP.2003.809851

4. Mattioni, L. and G. Marrocco, "Desing of a broadband HF antenna for multimode naval communications," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 179-182, 2005.
doi:10.1109/LAWP.2005.850796

5. Storn, R. and K. Price, "Differential evolution --- A simple and efficient adaptive scheme for global optimization over continuous spaces," Univ. California, Berkeley, Int. Comput. Sci. Inst., Berkeley.

6. Storn, R., "System design by constraint adaptation and differential evolution," IEEE Trans. Evolutionary Computation, Vol. 3, 22-34, Apr. 1999.
doi:10.1109/4235.752918

7. Qing, A., X. Xu, and Y. B. Gan, "Anisotropy of composite materials with inclusion with orientation preference," IEEE Trans. Antennas Propagat., Vol. 53, No. 2, 737-744, Feb. 2005.
doi:10.1109/TAP.2004.841316

8. Xue, F., A. C. Sanderson, and R. J. Graves, "Pareto-based multi-objective differential evolution," Proceedings of the 2003 Congress on Evolutionary Computation (CEC'2003), Vol. 2, 862-869, IEEE Press, Canberra, Australia, 2003.

9. Noman, N. and H. Iba, "Accelerating differential evolution using an adaptive local search," IEEE Trans. Evolutionary Computation, Vol. 12, No. 1, 107-125, Feb. 2008.
doi:10.1109/TEVC.2007.895272

10. Li, R., L. Xu, X.-W. Shi, N. Zhang, and Z.-Q. Lv, "Improved differential evolution strategy for antenna array pattern synthesis problems," Progress In Electromagnetics Research, Vol. 113, 429-441, 2011.

11. Bo, Y. and B. Liu, "An epitome-based evolutionary algorithm with behavior division for multi-model optimizations algorithm," IEEE Int. Conference Neural Networks & Signal Processing, Zhenjiang, China, Jun. 8-10, 2008.

12. Li, J.-Y., "A bi-swarm optimizing strategy and its application of antenna design," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1877-1886, 2009.
doi:10.1163/156939309789932449

13. Guo, J.-L., J.-Y., and Li, "Pattern synthesis of conformal array antenna in the presence of platform using dierential evolution algorithm," IEEE Trans. Antenna Propagat., Vol. 57, No. 9, 2615-2621, Sep. 2009.
doi:10.1109/TAP.2009.2027046

14. Rogers, D. and C. M. Butler, "An efficient curved-wire integral equation solution technique," IEEE Trans. Antennas Propagat., Vol. 49, No. 1, 70-79, Jan. 2001.
doi:10.1109/8.910532