Vol. 24
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-05-24
A High Selectivity Quadruple-Mode BPF with Two Short-Circuited Stub-Loaded SIRs
By
Progress In Electromagnetics Research Letters, Vol. 24, 43-50, 2011
Abstract
In this paper, a high selectivity quadruple-mode bandpass filter (BPF) with source-load coupling is proposed. This filter uses two short-circuited stubloaded stepped-impedance resonators (SIRs) which have the same type but different size. Two SIRs can generate four operating modes, which can be approximately adjusted individually. Owing to the special design of the filter, the coupling of two resonators is weak. In each resonator, the even-mode frequency can be flexibly controlled by changing the length of the short stub, whereas the odd-mode one remains stationary. Due to the source-load coupling, two transmission zeros are close to the cut-off frequencies of the passband, which leads to high selectivity. Simulated results show that central frequency is 2.27 GHz with 3-dB fractional bandwidth of 22.9%. The measured and simulated results are well complied with each other.
Citation
Liang Zhou, Shaobin Liu, Ya-Nan Guo, Xiang-Kun Kong, and Hai Feng Zhang, "A High Selectivity Quadruple-Mode BPF with Two Short-Circuited Stub-Loaded SIRs ," Progress In Electromagnetics Research Letters, Vol. 24, 43-50, 2011.
doi:10.2528/PIERL11042001
References

1. Lin, Y.-S., W.-C. Ku, C.-H. Wang, and C. H. Chen, "Wideband coplanar-waveguide bandpass filters with good stopband rejection," IEEE Microw. Wirel. Compon. Lett., Vol. 14, No. 9, 422-424, 2004.
doi:10.1109/LMWC.2004.832069

2. Yang, G. M., R. H. Jin, and J. P. Geng, "Planar microstrip UWB bandpass filter using U-shaped slot coupling structure," Electron. Lett., Vol. 42, No. 25, 1461-1463, 2006.
doi:10.1049/el:20062284

3. Yang, G. M., R. Jin, J. Geng, X. Huang, and G. Xiao, "Ultra-wideband bandpass filter with hybrid quasi-lumped elements and defected ground structure," IET Microw. Antennas Propag., Vol. 1, No. 3, 733-736, 2007.
doi:10.1049/iet-map:20060288

4. Adam, H., A. Ismail, M. A. Mahdi, M. S. Razalli, A. R. H. Alhawari, and B. K. Esfeh, "X-band miniaturized wideband band-pass filter utilizing multilayered microstrip hairpin resonator," Progress In Electromagnetic Research, Vol. 93, 177-188, 2009.
doi:10.2528/PIER09042202

5. Li, R. and L. Zhu, "Compact UWB bandpass filter using stub-loaded multiple-mode resonator," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 1, 40-42, 2007.
doi:10.1109/LMWC.2006.887251

6. Han, L., K. Wu, and X.-P. Chen, "Compact ultra-wideband bandpass filter using stub-loaded resonator," Electron. Lett., Vol. 45, No. 10, 504-506, 2009.
doi:10.1049/el.2009.0510

7. Wong, S. W. and L. Zhu, "EBG-embedded multiple-mode resonator for UWB bandpass filter with improved upper-stopband performance," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 6, 421-423, 2007.
doi:10.1109/LMWC.2007.897788

8. Wu, Y.-L., C. Liao, and X.-Z. Xiong, "A dual-wideband bandpass filter based on E-shaped microstrip sir with improved upper-stopband performance," Progress In Electromagnetic Research, Vol. 108, 141-153, 2010.
doi:10.2528/PIER10071802

9. Makimoto, M. and S. Yamashita, Microwave Resonators and Filters for Wireless Communications, Springer Series in Advanced Micro-electronics, 2001.

10. Chin, K.-S., J.-L. Hung, C.-W. Huang, J. S. Fu, B.-G. Chen, and T.-J. Chen, "LTCC dual-band stepped-impedance-stub filter constructed with vertically folded," Electron. Lett., Vol. 46, No. 23, Nov. 2010.
doi:10.1049/el.2010.2347

11. Chen, C.-Y., C.-Y. Hsu, and H.-R. Chuang, "Design of miniature planar dual-band filter using dual-feeding structures and embedded resonators," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 12, 669-671, Dec. 2006.
doi:10.1109/LMWC.2006.885621

12. Singh, P. K., S. Basu, and Y.-H. Wang, "Miniature dual-band filter using quarter wavelength stepped impedance resonators," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 2, 88-90, Feb. 2008.
doi:10.1109/LMWC.2007.915032

13. Zhang, Y. P. and M. Sun, "Dual-band microstrip bandpass filter using stepped-impedance resonator with new coupling schemes," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3779-3785, Oct. 2006.
doi:10.1109/TMTT.2006.882895

14. Athukorala, L. and D. Budimir, "Compact dual-mode open loop microstrip resonators and filters," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 11, 698-670, Nov. 2009.
doi:10.1109/LMWC.2009.2032003

15. Wong, S. W. and L. Zhu, "Quadruple-mode UWB bandpass filter with improved out-of-band rejection," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 3, 152-154, Mar. 2009.
doi:10.1109/LMWC.2009.2013735

16. Yao, B. Y., Y. G. Zhou, Q. S. Cao, and Y. C. Chen, "Compact UWB bandpass filter with improved upper-stopband performance," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 1, 27-29, Jan. 2009.
doi:10.1109/LMWC.2008.2008558