Vol. 24
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-06-08
A Miniaturized Lowpass/Bandpass Filter Using Double Arrow Head Defected Ground Structure with Centered Etched Ellipse
By
Progress In Electromagnetics Research Letters, Vol. 24, 99-107, 2011
Abstract
A new double arrow head defected ground structure (DGS) with centered etched ellipse is proposed for designing a multilayer low pass filter (LPF) with wide rejection band and low insertion loss in the stop-band. The prototype LPF consists of three double arrow head DGS with centered etched ellipse in the ground plane and compensated capacitor on the top layer of a 30×40 mm2 Roger RT/Duroid5880 substrate having relative permittivity (εr) of 2.2 and thickness of 0.78 mm. The cutoff frequency is equal to 1.07 GHz .The prototype LPF is then realized as multilayer structure to enhance the filter response and reduce its size. The size reduction of the proposed multi-layer LPF is about 26% more than the conventional one. The proposed filter has been fabricated and measured. Good agreement is achieved between the simulated and measured results. The filter presents the advantages of compact size; low insertion loss and high out-band suppression. Finally, the multilayer LPF is transformed to band pass filter (BPF) using J-inverter method.
Citation
Mohamed Al Sharkawy, Darwish Abd El-Aziz Mohamed, and E. Mahmoud, "A Miniaturized Lowpass/Bandpass Filter Using Double Arrow Head Defected Ground Structure with Centered Etched Ellipse," Progress In Electromagnetics Research Letters, Vol. 24, 99-107, 2011.
doi:10.2528/PIERL11042909
References

1. Boutejdar, A., A. Sherbini, S. Amari, and A. S. Omar, "A new technique to double the reject band of a low-pass filter by employing coupled C-open-loop resonators as defected ground," Asia Pacific Microwave Conference, Yokohama, Japan, 2006.

2. Lim, J. S., C. S. Kim, T. Y. Lee, D. Ahn, and Nam, "Design of low pass filters using defected ground structure and compensated microstrip line," Electronic Letters, Vol. 38, 1357-1358, 2002.
doi:10.1049/el:20020889

3. Boutejdar, A. and A. S. Omar, "A miniature 5.2-GHz band stop microstrip filter using multilayer technique and coupled octagonal defected ground structure," Microwave and Optical Technology Letters, Vol. 51, 2810-2813, 2009.
doi:10.1002/mop.24770

4. Ahn, D., J. Park, C. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microwave Theory Tech., Vol. 49, 86-93, 2001.
doi:10.1109/22.899965

5. Rahman, A., A. Boutejdar, A. K. Verma, G. Nadim, and A. S. Omar, "Improved circle model for DGS based lowpass filter," IEEE Antennas and Propagation Symposium, Vol. 1, 998-1001, 2004.
doi:10.1109/APS.2004.1329841

6., http://www.ansoft.com/products/hf/hfss/.

7. Awida, M., A. Boutejdar, A. Safwat, H. El-Hennawy, and A. Omar, "Multi-bandpass filters using multi-armed open loop resonators with direct feed," IEEE MTT-S International Microwave Symposium, Honolulu, Hawaii, June 2007.

8. Li, M., L. Haiwen, A. Boutejdar, W. Shuxin, and F. Tong, "Novel microstrip bandpass filter with slotted hexagonal resonators and capacitive loading," Proc. 38th EUMC , Amsterdam, The Netherlands, October 2008.

9. Al Sharkawy, M. H., A. Boutejdar, F. Alhefnawi, and O. Luxor, "Improvement of compactness of lowpass/bandpass filter using a new electromagnetic coupled crescent defected ground structure resonators," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 25, No. 7, July 2010.