Vol. 24
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-06-03
Achievable Transverse Cylindrical Electromagnetic Mode
By
Progress In Electromagnetics Research Letters, Vol. 24, 59-68, 2011
Abstract
The system of Maxwell equations with an initial condition in a vacuum is solved in a cylindrical coordinate system. It derives the cylindrical transverse electromagnetic wave mode in which the electric field and magnetic field are not in phase. Such electromagnetic wave can generate and exist in actual application, and there is no violation of the law of conservation of energy during the electromagnetic field interchanges.
Citation
Rui Chen, and Xijun Li, "Achievable Transverse Cylindrical Electromagnetic Mode," Progress In Electromagnetics Research Letters, Vol. 24, 59-68, 2011.
doi:10.2528/PIERL11032907
References

1. Maxwell, J. C. and A dynamical theory of the electromagnetic field, Phil. Trans. Roy. Soc. London, Vol. 155, 459-512, 1865.
doi:10.1098/rstl.1865.0008

2. Van Bladel, J., Electromagnetic Fields, McGraw-Hill, 1964.

3. Jackson, J. D. and Classical Electrodynamics, , 3rd Ed., John Wiley and Sons, 1998.

4. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, Butterworth-Heinemann, 1980.

5. Tsang, T., Classical Electrodynamics, World Scientific Pub. Co. Inc., 1997.

6. Yang, R. R. G. and T. T. Y. Wong, Electromagnetic Fields and Waves, Higher Education Press, 2006.

7. Harrington, R. F., "Time-harmonic Electromagnetic Fields," McGraw-Hill, 1961.

8. Brittingham, J. N., "Focus waves modes in homogeneous Maxwell equations: Transverse electric mode," J. Appl. Phys., Vol. 54, 1179-1189, 2009.
doi:10.1063/1.332196

9. Chen, R., "The optimum differential equations," Chin. J. Engin. Math., Vol. 17, 82-86, 2000.
doi:10.3901/CJME.2004.01.082

10. Chen, R., "The uniqueness of the eigenvalue assemblage for optimum differential equations," Chin. J. Engin. Math., Vol. 20, 121-124, 2003.
doi:10.3901/JME.2003.05.121

11. Chen, R., "The problem of initial value for the plane transverse electromagnetic mode," Acta Phys. Sin-CH ED, Vol. 49, 2514-2518, 2000.

12. Coleman, S. and D. Grischkowsky, "A THz transverse electro-magnetic mode two-dimensional interconnect layer incorporating quasi-optics," Appl. Phys. Lett., Vol. 83, 3656-3658, 2003.
doi:10.1063/1.1624474

13. Chu, C. and T. Ohkawa, "Transverse electromagnetic waves," Phys. Rev. Lett., Vol. 48, 837-838, 1982.
doi:10.1103/PhysRevLett.48.837

14. Davis, L. W. and G. Patsakos, "TM and TE electromagnetic beams in free space," Opt. Lett., Vol. 6, 22-23, 1981.
doi:10.1364/OL.6.000022

15. Chew, , W. C. and W. C. Weedon, "A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates," Micro. Opt. Tech. Lett., Vol. 7, 599-604, 1994.
doi:10.1002/mop.4650071304

16. Elliott, R. S., Electromagnetics --- History, Theory, and Applications, IEEE Press, New York, 1993.

17. Karlsson, A. and G. Kristensson, "Constitutive relations, dissipation, and reciprocity for the Maxwell equations in the time domain," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 1-6, 537-551, 1992.

18. Ruan, Z., M. Yan, C. W. Neff, and M. Qiu, "Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations," Phys. Rev. Lett., Vol. 99, 113903, 2007.
doi:10.1103/PhysRevLett.99.113903

19. Isic, G., R. Gajic, B. Novakovic, Z. Popovic, K. Hingerl, and , "Radiation and scattering from imperfect cylindrical electromagnetic cloaks," Opt. Express, Vol. 16, 1413-1422, 2008.
doi:10.1364/OE.16.001413

20. Naqvi, A., S. Ahmed, and Q. A. Naqvi, "Perfect electromagnetic conductor and fractional dual interface placed in a chiral nihility medium," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1991-1999, 2010.

21. Chen, H.-Y., L.-J. Deng, and P.-H. Zhou, "Suppression of surface wave from finite conducting surfaces with impedance loading at margins," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1977-1989, 2010.

22. Pinel, N., J. Saillard, and C. Bourlier, "Extension of the roughness criterion of a one-step surface to a one-step layer," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1195-1205, 2010.
doi:10.1163/156939310791586043