Vol. 136
Latest Volume
All Volumes
PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-15
Balanced-to-Unbalanced Bagley Power Divider with Input-Reflectionless Filtering Characteristics
By
Progress In Electromagnetics Research C, Vol. 136, 123-135, 2023
Abstract
A novel balanced-to-unbalanced (BTU) Bagley power divider (BPD) with input-reflectionless filtering characteristics is proposed. It features a balanced input port and three single-ended output ports, which is difficult to achieve by means of conventional BTU power dividers. The filtering characteristics are achieved by parallel coupled lines. To further improve the differential-mode filtering selectivity, stepped impedance resonators are applied to introduce two transmission zeros near the passband. The input-reflectionless characteristic in the bandstop region is achieved by loading absorptive branches. For verifying the proposed power divider topology, a prototype of microstrip BTU Bagley power divider operating at 1.0 GHz is designed and fabricated with 3-dB filtering bandwidth of 72%. Furthermore, 10-dB input-reflectionless bandwidth covers the full measurement frequency from 0 to 2.5 GHz. Good agreement between the simulation and measurement validated the proposed method.
Citation
Qi Chen, Zhongbao Wang, Shipeng Zhao, Hongmei Liu, and Shao-Jun Fang, "Balanced-to-Unbalanced Bagley Power Divider with Input-Reflectionless Filtering Characteristics," Progress In Electromagnetics Research C, Vol. 136, 123-135, 2023.
doi:10.2528/PIERC23063007
References

1. Pozar, D. M., Microwave Engineering, 2nd Ed., Wiley, 1998.

2. Shamaileh, K., A. Qaroot, and N. Dib, "Design of miniaturized 3-way Bagley polygon power divider using non-uniform transmission lines," IEEE Int. Symp. Antenna & Prop., 29-32, Jul. 2011.

3. Saleh, S., W. Ismail, I. S. Z. Abidina, et al. "Compact UWB 1:2:1 unequal-split 3-way Bagley power divider using non-uniform transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 2, 262-276, Jan. 2021.
doi:10.1080/09205071.2020.1832586

4. Dong, G. and X. Yang, "General design equations for arbitrary odd-way filtering Bagley polygon power divider with notch band," Journal of Electromagnetic Waves and Applications, Vol. 36, No. 3, 378-387, Aug. 2021.
doi:10.1080/09205071.2021.1970028

5. Buesa-Zubiria, A. and J. Esteban, "Design of five-way Bagley polygon power dividers in rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 66, No. 1, 116-127, Jan. 2018.
doi:10.1109/TMTT.2017.2738002

6. Jaradat, H., N. Dib, and K. Al Shamaileh, "Design of multi-band miniaturized Bagley power dividers based on non-uniform coplanar waveguide," AEU --- Int. J. Electron. Commun., Vol. 118, Art. No. 153137, May 2020.
doi:10.1016/j.aeue.2020.153137

7. Li, W. T., H. R. Zhang, X. J. Chai, et al. "Compact dual-band balanced-to-unbalanced filtering power divider design with extended common-mode suppression bandwidth," IEEE Microwave Wireless Compon. Lett., Vol. 32, No. 6, 511-514, Jun. 2022.
doi:10.1109/LMWC.2022.3145021

8. Xia, B., L. S. Wu, and J. Mao, "A new balanced-to-balanced power divider/combiner," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 9, 2791-2798, Sep. 2012.
doi:10.1109/TMTT.2012.2203926

9. Li, H. Y., J. X. Xu, and X. Y. Zhang, "Miniaturized balanced filtering power dividers with arbitrary power division ratio using multimode dielectric resonator in single cavity," IEEE Trans. Circuits Syst. II Exp. Briefs, Vol. 69, No. 6, 2707-2711, Jun. 2022.

10. Xia, B., L. S. Wu, S. W. Ren, and J. F. Mao, "A balanced-to-balanced power divider with arbitrary power division," IEEE Trans. Microwave Theory Tech., Vol. 61, No. 8, 2831-2841, Aug. 2013.
doi:10.1109/TMTT.2013.2268739

11. Zhang, G., Q. Zhang, Q. Liu, W. Tang, and J. Yang, "Design of a new dual-band balanced-to-balanced filtering power divider based on the circular microstrip patch resonator," IEEE Trans. Circuits Syst. II Exp. Briefs, Vol. 68, No. 12, 3542-3546, Dec. 2021.

12. Chen, S., W. C. Lee, and T. L. Wu, "Balanced-to-balanced and balanced-to-unbalanced power dividers with ultra-wideband common-mode rejection and absorption based on mode-conversion approach," IEEE Trans. on Electromagn. Compat., Vol. 9, No. 2, 306-316, Feb. 2019.

13. Wei, F., Z. J. Yang, P. Y. Qin, et al. "A balanced-to-balanced in-phase filtering power divider with high selectivity and isolation," IEEE Trans. Microwave Theory Tech., Vol. 67, No. 2, 683-694, Feb. 2019.
doi:10.1109/TMTT.2018.2880903

14. Wu, L. S., Y. X. Guo, L. F. Qiu, and J. F. Mao, "A new balanced-to-single-ended (BTSE) power divider," IEEE Int. Wireless Symp., 1-4, Mar. 2014.

15. Zhang, W., Y. Wu, Y. Liu, F. M. Ghannouchi, and A. Hasan, "A wideband balanced-to-unbalanced coupled-line power divider," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 6, 410-412, Jun. 2016.
doi:10.1109/LMWC.2016.2561400

16. Gao, X., W. Feng, W. Che, and Q. Xue, "Wideband balanced-to-unbalanced filtering power dividers based on coupled lines," IEEE Trans. Microwave Theory Tech., Vol. 65, No. 1, 86-95, Jan. 2017.
doi:10.1109/TMTT.2016.2614668

17. Zhu, H., J.-Y. Lin, and Y. J. Guo, "Filtering balanced-to-single-ended power dividers with wide range and high level of common-mode suppression," IEEE Trans. Microwave Theory Tech., Vol. 67, No. 12, 5038-5048, Dec. 2019.
doi:10.1109/TMTT.2019.2944383

18. Feng, W., X. Ma, R. Gomez-Garcia, Y. Shi, W. Che, and Q. Xue, "Multi-functional balanced-to-unbalanced filtering power dividers with extended upper stopband," IEEE Trans. Circuits Syst. II Exp. Briefs, Vol. 66, No. 7, 1154-1158, Jul. 2019.

19. Feng, W., W. Che, Y. Shi, Q. Xue, Y. C. Li, and X. Y. Zhou, "High selectivity balanced-to-unbalanced filtering power dividers using dual-mode ring resonators," IEEE Trans. Compon., Packag., Manuf. Technol., Vol. 9, No. 5, 927-935, May 2019.
doi:10.1109/TCPMT.2018.2866129

20. Wang, Z., Z. Zhu, Y. Fu, P. Han, H. Liu, and S. Fang, "A miniaturized balanced-to-unbalanced in-phase filtering power divider with wide upper stopband and wideband common-mode suppression," IEEE Access, Vol. 9, 143181-143187, Oct. 2021.

21. Lee, J., J. Lee, and N. S. Barker, "Rigorous design of input-reflectionless filter with Chebyshev response and exact approach to increase reflectionless range," IEEE Trans. Microwave Theory Tech., Vol. 69, No. 10, 4460-4475, Oct. 2021.
doi:10.1109/TMTT.2021.3098530

22. Zhao, K., R. Gomez-Garcia, and D. Psychogiou, "Tunable quasi-reflectionless bandpass filters using substrate integrated coaxial resonators," IEEE Trans. Circuits Syst. II Exp. Briefs, Vol. 69, No. 2, 379-383, Feb. 2022.

23. Zhang, Y., Y. Wu, W. Wang, and J. Yan, "High-performance common- and differential-mode re ectionless balanced band-pass filter using coupled ring resonator," IEEE Trans. Circuits Syst. II Exp. Briefs, Vol. 69, No. 3, 974-978, Mar. 2022.

24. Fan, M., K. Song, L. Yang, and R. Gomez-Garcia, "Frequency-reconfigurable input-reflectionless bandpass filter and filtering power divider with constant absolute bandwidth," IEEE Trans. Circuits Syst. II Exp. Briefs, Vol. 68, No. 7, 2424-2428, Jul. 2021.

25. Lee, B., S. Nam, J. Lee, "Filtering power divider with reflectionless response and wide isolation at output ports," IEEE Trans. Microwave Theory Tech., Vol. 67, No. 7, 2684-2692, Jul. 2019.
doi:10.1109/TMTT.2019.2913650

26. Pan, B., W. Feng, Y. Shi, M. Huang, W. Che, and Q. Xue, "High-performance wideband balanced bandpass filter based on transversal signal-interference techniques," IEEE Trans. Plasma Sci., Vol. 48, No. 12, 4119-4126, Dec. 2020.
doi:10.1109/TPS.2020.3035558

27. Kwa, H. W., X. M. Qing, and Z. N. Chen, "Broadband single-fed single-patch circularly polarized antenna for UHF RFID applications," IEEE AP-S Int. Symp., 1-4, 2008.

28. Nghiem, X. A., J. Guan, and R. Negra, "Design of a broadband three-way sequential Doherty power amplifier for modern wireless communications," IEEE MTT-S Int. Microwave Symp., 1-4, 2014.

29. Kang, H., H. Oh, W. Lee, C. S. Park, K. C. Hwang, K. Y. Lee, and Y. Yang, "Symmetric three-way Doherty power amplifier for high efficiency and linearity," IEEE Trans. Circuits Syst. II Exp. Briefs, Vol. 64, No. 8, 862-866, Aug. 2017.