1. Gabriel, C., S. Gabriel, and Y. E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine & Biology, Vol. 41, No. 11, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001
2. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine & Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002
3. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine & Biology, Vol. 41, No. 11, 22712293, 1996.
4. Nelson, S. O., S. Trabelsi, and A. W. Kraszewski, "Advances in sensing grain moisture content by microwave measurements," Transactions of the ASAE, Vol. 41, No. 2, 483-487, 1998.
doi:10.13031/2013.17169
5. Guo, W., S. O. Nelson, S. Trabelsi, and S. J. Kays, "10-1800 MHz dielectric properties of fresh apples during storage," J. of Food Engg., Vol. 83, No. 4, 562-569, 2007.
doi:10.1016/j.jfoodeng.2007.04.009
6. Nelson, S. O. and S. Trabelsi, "Dielectric spectroscopy measurements on fruit, meat, and grain," Trans. of the ASABE, Vol. 51, No. 5, 1829-1834, 2008.
doi:10.13031/2013.25298
7. Kundu, A. and B. Gupta, "Broadband dielectric properties measurement of some vegetables and fruits using open ended coaxial probe technique," Proceedings of The 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC), 480-484, IEEE, Kolkata, 2014.
8. Gandhi, O. P., "Yes the children are more exposed to radiofrequency energy from mobile telephones than adults," IEEE Access, Vol. 3, 985-988, 2015.
doi:10.1109/ACCESS.2015.2438782
9. Takei, R., T. Nagaoka, K. Saito, S. Watanabe, and M. Takahashi, "SAR variation due to exposure from a smartphone held at various positions near the torso," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 747-753, 2017.
doi:10.1109/TEMC.2016.2642201
10. Yelkenci, T., "Effects of metallic objects on specific absorption rate in the human head for 915 and 1900 MHz mobile phones," Frequenz, Vol. 60, No. 3-4, 46-50, 2006.
doi:10.1515/FREQ.2006.60.3-4.46
11. Christ, A. K., T. Samaras, C. Goiceanu, and N. Kuster, "The dependence of electromagnetic far-field absorption on body tissue composition in the frequency range from 300 MHz to 6 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 2188-2195, 2006.
doi:10.1109/TMTT.2006.872789
12. Yelkenci, T. and S. Paker, "The effects of frequency, polarization, direction and metallic objects on the SAR values in a human head model for plane wave exposure (500-2500 MHz)," Frequenz, Vol. 60, No. 11-12, 215-219, 2006.
doi:10.1515/FREQ.2006.60.11-12.215
13. Cooper, J. and V. Hombach, "The specific absorption rate in a spherical head model from a dipole with metallic walls nearby," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 4, 377-382, 1998.
doi:10.1109/15.736225
14. Meier, K., V. Hombach, R. Kastle, R. Y.-S. Tay, and N. Kuster, "The dependence of electromagnetic energy absorption upon human-head modeling at 1800 MHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 11, 2058-2062, 1997.
doi:10.1109/22.644237
15. Mirotznik, M. S., E. Cheever, and K. R. Foster, "High-resolution measurements of the specific absorption rate produced by small antennas in lossy media," IEEE Transactions on Instrumentation and Measurement, Vol. 45, No. 3, 754-756, 1996.
doi:10.1109/19.494594
16. Kraszewskl, A., M. A. Stuchly, S. S. Stuchly, G. Hartsgrove, and D. Adamski, "Specific absorption rate distribution in a full-scale model of man at 350 MHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 8, 779-783, 1984.
doi:10.1109/TMTT.1984.1132772
17. Kaszuba-Zwoinska, J., J. Gremba, B. Ga ldzinska-Calik, K. Wojcik-Piotrowicz, and P. J. Thor, "Electromagnetic field induced biological effects in humans," Przegl. Lek., Vol. 72, No. 11, 636-641, 2015.
18. Kivrak, E. G., K. K. Yurt, A. A. Kaplan, I. Alkan, and G. Altun, "Effects of electromagnetic fields exposure on the antioxidant defense system," J. Microsc. Ultrastruct., Vol. 5, No. 4, 167-176, 2017.
doi:10.1016/j.jmau.2017.07.003
19. Agarwal, A., N. R. Desai, K. Makker, A. Varghese, R. Mouradi, E. Sabanegh, and R. Sharma, "Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: An in vitro pilot study," Fertil. Steril., Vol. 92, No. 4, 1318-1325, 2009.
doi:10.1016/j.fertnstert.2008.08.022
20. Lewicka, M., G. A. Henrykowska, K. Pacholski, J. Smigielski, M. Rutkowski, M. Dziedziczak-Buczynska, and A. Buczynski, "The effect of electromagnetic radiation emitted by display screens on cell oxygen metabolism --- in vitro studies," Arch. Med. Sci., Vol. 11, No. 6, 1330-1339, 2015.
doi:10.5114/aoms.2015.56362
21. Lu, Y. S., B. T. Huang, Y. X. Huang, and , "Reactive oxygen species formation and apoptosis in human peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation," Oxid Med. Cell Longev., Article ID 740280, 2012.
22. De Iuliis, G. N., R. J. Newey, B. V. King, and R. J. Aitken, "Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro," PLoS One, Vol. 4, No. 7, 2009 (Erratum in: PLoS One, Vol. 8, No. 3, 2013.).
doi:10.1371/journal.pone.0006446
23. Sefiebakht, Y., A. A. Moosavi-Movahedi, S. Hosseinkhani, F. Khodagholi, M. Torkzadeh-Mahani, F. Foolad, and R. Faraji-Dana, "Effects of 940 MHz EMF on bioluminescence and oxidative response of stable luciferase producing HEK cells," Photochem. Photobiol. Sci., Vol. 13, No. 7, 1082-1092, 2014.
doi:10.1039/c3pp50451d
24. Behari, J., "Biological responses of mobile phone frequency exposure," Indian J. Exp. Biol., Vol. 48, No. 10, 959-981, 2010.
25. Duhaini, I., "The effects of electromagnetic fields on human health," Physica Medica, Vol. 32, No. 3, 213, 2016.
doi:10.1016/j.ejmp.2016.07.720
26. Hu, C., H. Zuo, and Y. Li, "Effects of radiofrequency electromagnetic radiation on neurotransmitters in the brain," Frontiers in Public Health, Vol. 9, 1-15, Article ID 691880, 2021.
27. Kundu, A. and B. Gupta, "Comparative SAR analysis of some Indian fruits as per the revised RF exposure guideline," IETE Journal of Research, Vol. 60, No. 4, 296-302, 2014.
doi:10.1080/03772063.2014.961981
28. Kundu, A., "Speccific absorption rate evaluation in apple exposed to RF radiation from GSM mobile towers," 2013 IEEE Applied Electromagnetics Conference (AEMC), 1-2, IEEE, Bhubaneswar, India, 2013.
29. Kundu, A., B. Gupta, and A. I. Mallick, "SAR analysis in a typical bunch of grapes exposed to radio frequency radiation in Indian scenario," 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), 1-5, IEEE, 2016.
30. Kundu, A., B. Gupta, and A. I. Mallick, "Specific absorption rate evaluation in a typical multilayer fruit: Coconut with twig due to electromagnetic radiation as per Indian standards," Microwave Review (Mikrotalasana Revija), Vol. 23, No. 2, 24-32, 2017.
31. Kundu, A., B. Gupta, and A. I. Mallick, "Dependence of electromagnetic energy distribution inside a typical multilayer fruit model on direction of arrival and polarization of incident field," 2019 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), 1-2, IEEE, 2019.
32. Kundu, A., B. Gupta, and A. I. Mallick, "Contrast in specific absorption rate for a typical plant model due to discrepancy among global and national electromagnetic standards," Progress In Electromagnetics Research M, Vol. 99, 139-152, 2021.
doi:10.2528/PIERM20090404
33. Kundu, A., B. Gupta, and A. I. Mallick, "Estimation of specific absorption rate levels in a typical fruit specimen and observations on their variations according to different electromagnetic standards," Microwave Review, Vol. 27, No. 2, 2021.
34. Kundu, A., B. Gupta, and A. I. Mallick, "Dependence of specific absorption rate and its distribution inside a homogeneous fruit model on frequency, angle of incidence, and wave polarization," Frequenz, Vol. 76, No. 1-2, 109-119, 2022.
doi:10.1515/freq-2021-0049
35. Deschamps, G., "Impedance of an antenna in a conducting medium," IRE Trans. Antennas and Propagation, Vol. 10, No. 5, 648-650, 1962.
doi:10.1109/TAP.1962.1137923
36. Liu, L., D. Xu, and Z. Jiang, "Improvement in dielectric measurement technique of open-ended coaxial line resonator method," Electronics Letters, Vol. 22, No. 7, 373-375, 1986.
doi:10.1049/el:19860254
37. Xu, D., L. Liu, and Z. Jiang, "Measurement of the dielectric properties of biological substances using an improved open-ended coaxial line resonator method," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 12, 1424-1428, 1987.
doi:10.1109/TMTT.1987.1133870
38. Stuchly, M. A. and S. S. Stuchly, "Coaxial line reflection method for measuring dielectric properties of biological substances at radio and microwave frequencies --- A review," IEEE Trans. Instrum. Meas., Vol. 29, No. 3, 176-183, 1980.
doi:10.1109/TIM.1980.4314902
39. Athey, T. W., M. A. Stuchly, and S. S. Stuchly, "Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part I," IEEE Transactions on Microwave Theory and Techniques, Vol. 30, No. 1, 82-86, 1982.
doi:10.1109/TMTT.1982.1131021
40. CST STUDIO SUITE 2016, , , https://www.3ds.com/products-services/simulia/products/cst-studio-suite/.
41. DoT Mobile Communication --- Radio Waves & Safety, 1-15, India, 2012.
42. ICNIRP "Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)," Health Phys., Vol. 118, No. 5, 483-524, 2020.
doi:10.1097/HP.0000000000001210
43. Cleveland, Jr., R. F., D. M. Sylvar, and J. L. Ulcek, "Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields," FCC OET Bulletin, Vol. 65, Edition 97-01, Washington D.C., 1997.
44. SAEFL Electrosmog in the Environment, 1-56, Switzerland, 2005.
45. Ministry of Health of the Russian Federation, , SanPiN 2.1.8/2.2.4.1190-03: Arrangement and operation of land mobile radiocommunication facilities --- Hygienic requirements, 1-17, Russia, 2003.
46. The president of the council of ministers (Italy), , Establishment of exposure limits, attention values, and quality goals to protect the population against electric, magnetic, and electromagnetic field generated at frequencies between 100 kHz and 300 GHz (unofficial translation by P. Vecchia), 1-6, Italy, 2003.
47. Vecchia, P., "Radiofrequency fields: Bases for exposure limits," 2 European IRPA Congress on Radiation Protection | Radiation Protection: From Knowledge to Action, 1-19, Paris, 2006.
48. Foster, K. R., "Exposure limits for radiofrequency energy: Three models," Proceedings of the Eastern European Regional EMF Meeting and Workshop (Criteria for EMF Standards Harmonization), 1-6, Varna, Bulgaria, 2001.
49. Weiland, T., "A discretization method for the solution of Maxwell's equations for six-component fields," Electronics and Communications AEU, Vol. 31, No. 3, 116-120, 1977.
doi:10.2528/PIER00080103
50. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
51. "IEC/IEEE International Standard --- Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz --- Part 1: General requirements for using the finite-difference time-domain (FDTD) method for SAR calculations," IEC/IEEE 62704-1: 2017, 1-86, United States, 2017.
doi:10.1088/0031-8949/91/3/035501
52. Bhattacharya, K., "On the dependence of charge density on surface curvature of an isolated conductor," Physica Scripta, Vol. 91, No. 3, 035501, 2016.
53. Jordan, E. C. and K. G. Balmain, Electromagnetic Waves and Radiating Systems, 2nd Ed., PHI Learning, 2009.
54. Deshpande, M. D., C. R. Cockrell, F. B. Beck, E. Vedeler, and M. B. Koch, "Analysis of electromagnetic scattering from irregularly shaped, thin, metallic at plates," NTRS --- NASA Technical Reports Server, NASA Technical Paper 3361, 1993.
doi:10.1080/10942912.2016.1261154
55. Kataria, T. K., J. L. Olvera-Cervantes, A. Corona-Chavez, R. Rojas-Laguna, and M. E. Sosa-Morales, "Dielectric properties of guava, mamey sapote, prickly pears, and Nopal in the microwave range," International Journal of Food Properties, Vol. 20, No. 12, 2944-2953, 2017.
doi:10.4161/psb.1.2.2434
56. Vian, D. R., S. Girard, P. Bonnet, F. Paladian, E. Davies, and G. Ledoigt, "Microwave irradiation affects gene expression in plants," Plant Signaling & Behavior, Vol. 1, No. 2, 67-69, 2006.
doi:10.1111/j.1399-3054.2006.00740.x
57. Roux, D., A. Vian, S. Girard, P. Bonnet, F. Paladian, E. Davies, and G. Ledoigt, "Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants," Physiologia Plantarum, Vol. 128, No. 2, 283-288, 2006.
doi:10.4161/psb.3.6.5385
58. Roux, D., C. Faure, P. Bonnet, S. Girard, G. Ledoigt, E. Davies, M. Gendraud, F. Paladian, and A. Vian, "A possible role for extra-cellular ATP in plant responses to high frequency, low amplitude electromagnetic field," Plant Signaling & Behavior, Vol. 3, No. 6, 383-385, 2008.
doi:10.4161/psb.2.6.4657
59. Vian, A., C. Faure, S. Girard, E. Davies, F. Halle, P. Bonnet, G. Ledoigt, and F. Paladian, "Plants respond to GSM like radiations," Plant Signaling & Behavior, Vol. 2, No. 6, 522-524, 2007.
60. Vian, A., E. Davies, M. Gendraud, and P. Bonnet, "Plant responses to high frequency electromagnetic fields," BioMed Research International, Article ID 1830262, 2016.
doi:10.1002/bem.22319
61. Kundu, A., S. Vangaru, S. Bhattacharyya, A. I. Mallick, and B. Gupta, "Electromagnetic irradiation evokes physiological and molecular alterations in rice," Bioelectromagnetics, Vol. 42, No. 2, 173-185, 2021.
doi:10.1002/bem.22374
62. Kundu, A., S. Vangaru, S. Bhowmick, S. Bhattacharyya, A. I. Mallick, and B. Gupta, "One-time electromagnetic irradiation modifies stress-sensitive gene expressions in rice plant," Bioelectromagnetics, Vol. 42, No. 8, 649-658, 2021.