Vol. 126
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-19
Parameter Identification of PMSWG Based on ASMDRPSO
By
Progress In Electromagnetics Research C, Vol. 126, 253-265, 2022
Abstract
Aiming at the problem of poor identification accuracy in traditional particle swarm optimization algorithms, an adaptive search particle swarm optimization algorithm (ASMDRPSO) method for permanent magnet synchronous wind generator (PMSWG) parameter identification is proposed. Firstly, in order to solve the issue of the under-rank equation, a full-rank state equation and fitness function are established. Then, in ASMDRPSO, a dynamic adjustment strategy is adopted in the inertia weight update process to enrich population diversity. In addition, the average best position strategy is designed to avoid getting stuck in a local optimum. Moreover, an adaptive learning radius is supplemented in ASMDRPSO, and the particle search range is enlarged when the ASMDRPSO evolution is stalled. Finally, the simulated and experimental results are presented to verify the stronger optimization ability, stronger robustness, and higher search accuracy of the proposed control strategy than the traditional PSO.
Citation
Yang Zhang, Mingfeng Zhou, and Zhun Cheng, "Parameter Identification of PMSWG Based on ASMDRPSO," Progress In Electromagnetics Research C, Vol. 126, 253-265, 2022.
doi:10.2528/PIERC22100302
References

1. Babel, A. S., J. G. Cintron-Rivera, S. N. Foster, et al. "Evaluation of a parameter identification method for permanent magnet AC machines through parametric sensitivity analysis," IEEE Transactions on Energy Conversion, Vol. 29, No. 1, 240-249, 2014.
doi:10.1109/TEC.2013.2288235

2. Underwood, S. J. and I. Husain, "Online parameter estimation and adaptive control of permanent-magnet synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 57, No. 7, 2435-2443, 2010.
doi:10.1109/TIE.2009.2036029

3. Li, Z., G. Feng, C. Lai, D. Banerjee, W. Li, and N. C. Kar, "Investigation of on-line parameter estimation for interior PMSMs considering current injection and machine operating conditions," 2018 21th International Conference on Electrical Machines and Systems (ICEMS), 1395-1400, Jeju, Korea (South), 2018.

4. Liu, K., Z. Q. Zhu, Q. Zhang, et al. "Influence of nonideal voltage measurement on parameter estimation in permanent-magnet synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 59, No. 6, 2438-2447, 2012.
doi:10.1109/TIE.2011.2162214

5. Rashed, M., P. F. A. MacConnell, A. F. Stronach, et al. "Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation," IEEE Transactions on Industrial Electronics, Vol. 54, No. 3, 1664-1675, 2007.
doi:10.1109/TIE.2007.895136

6. Liu, K. and Z. Q. Zhu, "Quantum genetic algorithm-based parameter estimation of PMSM under variable speed control accounting for system identifiability and VSI nonlinearity," IEEE Transactions on Industrial Electronics, Vol. 62, No. 4, 2363-2371, 2015.
doi:10.1109/TIE.2014.2351774

7. Li, Z., G. Feng, C. Lai, et al. "Current injection-based multi-parameter estimation for dual three-phase IPMSM considering VSI nonlinearity," IEEE Transactions on Transportation Electrification, Vol. 5, No. 2, 405-415, 2019.
doi:10.1109/TTE.2019.2913270

8. Yang, H., R. Yang, W. Hu, et al. "FPGA-based sensorless speed control of PMSM using enhanced performance controller based on the reduced-order EKF," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 9, No. 1, 289-301, 2021.
doi:10.1109/JESTPE.2019.2962697

9. Li, X. and R. Kennel, "General formulation of Kalman-filter-based online parameter identification methods for VSI-Fed PMSM," IEEE Transactions on Industrial Electronics, Vol. 68, No. 4, 2856-2864, 2021.
doi:10.1109/TIE.2020.2977568

10. Liu, Z., H. Wei, X. Li, et al. "Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO," IEEE Transactions on Power Electronics, Vol. 33, No. 12, 10858-10871, 2018.
doi:10.1109/TPEL.2018.2801331

11. Dos Santos Alonso, A. M., B. R. Pereira Junior, D. I. Brandao, et al. "Optimized exploitation of ancillary services: Compensation of reactive, unbalance and harmonic currents based on particle swarm optimization," Revista IEEE America Latina, Vol. 19, No. 2, 314-325, 2021.
doi:10.1109/TLA.2021.9443074

12. Mahmud Ghasemi-Bijan, M. A. P. P., "Induction machine parameter range constraints in genetic algorithm based efficiency estimation techniques," IEEE Transactions on Industry Applications, Vol. 54, No. 5, 4186-4197, 2018.
doi:10.1109/TIA.2018.2836344

13. Li, H. and L. Zhang, "A bilevel learning model and algorithm for self-organizing feed-forward neural networks for pattern classification," IEEE Transactions on Neural Networks and Learning Systems, Vol. 32, No. 11, 4901-4915, 2021.
doi:10.1109/TNNLS.2020.3026114

14. Shen, Y. and B. Jin, "Parameter identification of permanent magnet synchronous motor by least square method with fuzzy forgetting factor," Journal of System Simulation, Vol. 30, No. 9, 3404-3410+3419, 2018.

15. Mynar, Z., P. Vaclavek, and P. Blaha, "Synchronous reluctance motor parameter and state estimation using extended Kalman filter and current derivative measurement," IEEE Transactions on Industrial Electronics, Vol. 68, No. 3, 1972-1981, 2021.
doi:10.1109/TIE.2020.2973897

16. Zhang, H., H. Yan, Y. Leng, and X. Wang, "Research on PMSM online identification based on model reference adaptation," Electric Drive, Vol. 45, No. 12, 3-7+16, 2015.

17. Xiao, X., Q. Xu, Y. Wang, and Y. Shi, "A genetic algorithm-based method for parameter identification of embedded permanent magnet synchronous motor," Journal of Electrical Engineering Technology, Vol. 29, No. 3, 21-26, 2014.

18. Gu, X., S. Hu, T. Shi, and Q. Geng, "Multi parameter decoupling online identification of permanent magnet synchronous motor based on neural network," Journal of Electrical Technology, Vol. 30, No. 6, 114-121, 2015.

19. Shen, J., H. Yu, Y. Wang, M. Xu, and H. Chen, "Research on the application of standard particle swarm optimization algorithm in permanent magnet synchronous motor parameter identification," Micromotor, Vol. 48, No. 12, 32-35, 2015.

20. Yuan, Y., "Parameter identification of permanent magnet synchronous motor based on adaptive particle swarm optimization algorithm," Measurement and Control Technology, Vol. 37, No. 7, 42-45+13, 2018.

21. Lin, G., J. Zhang, C. Liu, and K. Zhao, "PMSM parameter identification with improved comprehensive learning particle swarm optimization algorithm," Journal of Electrical Machinery and Control, Vol. 19, No. 1, 51-57, 2015.

22. Eberhart, R. and J. Kennedy, "A new optimizer using particle swarm theory," MHS'95, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39-43, Nagoya, Japan, 1995.