1. Babel, A. S., J. G. Cintron-Rivera, S. N. Foster, et al. "Evaluation of a parameter identification method for permanent magnet AC machines through parametric sensitivity analysis," IEEE Transactions on Energy Conversion, Vol. 29, No. 1, 240-249, 2014.
doi:10.1109/TEC.2013.2288235
2. Underwood, S. J. and I. Husain, "Online parameter estimation and adaptive control of permanent-magnet synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 57, No. 7, 2435-2443, 2010.
doi:10.1109/TIE.2009.2036029
3. Li, Z., G. Feng, C. Lai, D. Banerjee, W. Li, and N. C. Kar, "Investigation of on-line parameter estimation for interior PMSMs considering current injection and machine operating conditions," 2018 21th International Conference on Electrical Machines and Systems (ICEMS), 1395-1400, Jeju, Korea (South), 2018.
4. Liu, K., Z. Q. Zhu, Q. Zhang, et al. "Influence of nonideal voltage measurement on parameter estimation in permanent-magnet synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 59, No. 6, 2438-2447, 2012.
doi:10.1109/TIE.2011.2162214
5. Rashed, M., P. F. A. MacConnell, A. F. Stronach, et al. "Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation," IEEE Transactions on Industrial Electronics, Vol. 54, No. 3, 1664-1675, 2007.
doi:10.1109/TIE.2007.895136
6. Liu, K. and Z. Q. Zhu, "Quantum genetic algorithm-based parameter estimation of PMSM under variable speed control accounting for system identifiability and VSI nonlinearity," IEEE Transactions on Industrial Electronics, Vol. 62, No. 4, 2363-2371, 2015.
doi:10.1109/TIE.2014.2351774
7. Li, Z., G. Feng, C. Lai, et al. "Current injection-based multi-parameter estimation for dual three-phase IPMSM considering VSI nonlinearity," IEEE Transactions on Transportation Electrification, Vol. 5, No. 2, 405-415, 2019.
doi:10.1109/TTE.2019.2913270
8. Yang, H., R. Yang, W. Hu, et al. "FPGA-based sensorless speed control of PMSM using enhanced performance controller based on the reduced-order EKF," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 9, No. 1, 289-301, 2021.
doi:10.1109/JESTPE.2019.2962697
9. Li, X. and R. Kennel, "General formulation of Kalman-filter-based online parameter identification methods for VSI-Fed PMSM," IEEE Transactions on Industrial Electronics, Vol. 68, No. 4, 2856-2864, 2021.
doi:10.1109/TIE.2020.2977568
10. Liu, Z., H. Wei, X. Li, et al. "Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO," IEEE Transactions on Power Electronics, Vol. 33, No. 12, 10858-10871, 2018.
doi:10.1109/TPEL.2018.2801331
11. Dos Santos Alonso, A. M., B. R. Pereira Junior, D. I. Brandao, et al. "Optimized exploitation of ancillary services: Compensation of reactive, unbalance and harmonic currents based on particle swarm optimization," Revista IEEE America Latina, Vol. 19, No. 2, 314-325, 2021.
doi:10.1109/TLA.2021.9443074
12. Mahmud Ghasemi-Bijan, M. A. P. P., "Induction machine parameter range constraints in genetic algorithm based efficiency estimation techniques," IEEE Transactions on Industry Applications, Vol. 54, No. 5, 4186-4197, 2018.
doi:10.1109/TIA.2018.2836344
13. Li, H. and L. Zhang, "A bilevel learning model and algorithm for self-organizing feed-forward neural networks for pattern classification," IEEE Transactions on Neural Networks and Learning Systems, Vol. 32, No. 11, 4901-4915, 2021.
doi:10.1109/TNNLS.2020.3026114
14. Shen, Y. and B. Jin, "Parameter identification of permanent magnet synchronous motor by least square method with fuzzy forgetting factor," Journal of System Simulation, Vol. 30, No. 9, 3404-3410+3419, 2018.
15. Mynar, Z., P. Vaclavek, and P. Blaha, "Synchronous reluctance motor parameter and state estimation using extended Kalman filter and current derivative measurement," IEEE Transactions on Industrial Electronics, Vol. 68, No. 3, 1972-1981, 2021.
doi:10.1109/TIE.2020.2973897
16. Zhang, H., H. Yan, Y. Leng, and X. Wang, "Research on PMSM online identification based on model reference adaptation," Electric Drive, Vol. 45, No. 12, 3-7+16, 2015.
17. Xiao, X., Q. Xu, Y. Wang, and Y. Shi, "A genetic algorithm-based method for parameter identification of embedded permanent magnet synchronous motor," Journal of Electrical Engineering Technology, Vol. 29, No. 3, 21-26, 2014.
18. Gu, X., S. Hu, T. Shi, and Q. Geng, "Multi parameter decoupling online identification of permanent magnet synchronous motor based on neural network," Journal of Electrical Technology, Vol. 30, No. 6, 114-121, 2015.
19. Shen, J., H. Yu, Y. Wang, M. Xu, and H. Chen, "Research on the application of standard particle swarm optimization algorithm in permanent magnet synchronous motor parameter identification," Micromotor, Vol. 48, No. 12, 32-35, 2015.
20. Yuan, Y., "Parameter identification of permanent magnet synchronous motor based on adaptive particle swarm optimization algorithm," Measurement and Control Technology, Vol. 37, No. 7, 42-45+13, 2018.
21. Lin, G., J. Zhang, C. Liu, and K. Zhao, "PMSM parameter identification with improved comprehensive learning particle swarm optimization algorithm," Journal of Electrical Machinery and Control, Vol. 19, No. 1, 51-57, 2015.
22. Eberhart, R. and J. Kennedy, "A new optimizer using particle swarm theory," MHS'95, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39-43, Nagoya, Japan, 1995.