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Parameter Identification of PMSWG Based on ASMDRPSO
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Abstract—Aiming at the problem of poor identification accuracy in traditional particle swarm
optimization algorithms, an adaptive search particle swarm optimization algorithm (ASMDRPSO)
method for permanent magnet synchronous wind generator (PMSWG) parameter identification is
proposed. Firstly, in order to solve the issue of the under-rank equation, a full-rank state equation
and fitness function are established. Then, in ASMDRPSO, a dynamic adjustment strategy is adopted
in the inertia weight update process to enrich population diversity. In addition, the average best position
strategy is designed to avoid getting stuck in a local optimum. Moreover, an adaptive learning radius
is supplemented in ASMDRPSO, and the particle search range is enlarged when the ASMDRPSO
evolution is stalled. Finally, the simulated and experimental results are presented to verify the stronger
optimization ability, stronger robustness, and higher search accuracy of the proposed control strategy
than the traditional PSO.

1. INTRODUCTION

PMSWG has the advantages of a simple structure, small moment of inertia, and low power loss [1–4].
In recent years, PMSWG has been applied more and more in the wind power generation industry. With
the increasing proportion of wind power capacity in power systems, the stability and reliability of power
systems are increasingly influenced by the operating conditions of PMSWG. The parameters of the motor
are usually considered constants. The main motor parameters include stator resistance [5], quadrature
and direct axis inductance [6], and permanent magnet flux [7]. However, these parameters are subject to
change due to factors such as temperature, magnetic saturation, and noise. In order to avoid deviations
in the control due to deviations between the actual and set parameters, the relevant motor parameters
need to be identified. The control of the PMSWG and the quality of the power fed into the grid is
improved by the accurate identification of motor parameters. The identified motor parameters can also
be used to determine whether or not the unit is working properly, and the reliability and stability of the
PMSWG can be improved. Therefore, it is important to identify the electrical parameters of PMSWG.

In recent years, online parameter identification methods [8–11] have been proposed by scholars.
Recursive least square (RLS), extended Kalman filter (EKF), model reference adaptive method (MRAS),
genetic algorithm [12], and neural network algorithm [13] are included in the online parameter
identification method. In [14], the least square algorithm with a fuzzy forgetting factor is applied
to parameter identification. It enables the forgetting factor to be dynamically adjusted, and it can be
seen from the identification results that this method is reliable. However, in this method, only the
stator resistance is identified. In [15], the EKF method is adopted to identify the two parameters of the
motor’s inductance and flux linkage. The identification effect is good, but the identification accuracy
and speed are affected by the selection of Q and R matrices. In [16], a new MRAS observer is created
by combining variable structure control and adaptive control theory. The robustness of the system
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has been improved to a certain extent, but there is still the problem of lack of rank in the system of
equations. In [17], a genetic algorithm-based method for parameter identification of Permanent Magnet
Synchronous Motor (PMSM) is proposed. The identification effect is good, but the convergence is slow.
In [18], a minimum mean square weight convergence neural network algorithm is applied to parameter
identification. The identification effect is good, but the identification speed is affected by the selection
of the convergence factor.

Due to its straightforward algorithm, particle swarm optimization (PSO) has been frequently
employed in the identification of PMSWG parameters. In [19], the results are improved by introducing
a time-varying nonlinear decreasing strategy into the updating process of the inertia weight. The inertia
weight adaptive updating formula is suggested in [20], but only the stator resistance and load torque are
identified, and the error is large. A new approach to motor parameter identification based on particle
swarm is developed in [21]. The growth rate operator that reflects the particle state is introduced into
the method, and the Improved Comprehensive Learning Particle Swarm Optimizer (ICLPSO) algorithm
is formed. It can be seen from the identification results that the algorithm enhances the particle search
ability, but it is easy to fall into the local optimal situation.

In order to improve the parameter identification ability of the PSO algorithm for PMSWG, an
improved particle swarm optimization (ASMDRPSO) is proposed for PMSWG parameter identification.
The contributions of this paper are summed up as follows:

1) The same amount of data is collected in the two cases of d-axis injected negative sequence current
and id = 0 current, and the mathematical model of PMSWG full rank can be obtained.

2) The inertia weight is dynamically changed to enhance population variety and the algorithm’s
ability to do global searches.

3) In order to avoid being in the local optimum, the average best position method is proposed.
4) The adaptive learning radius is added, the particle search scope expanded, the diversity of the

population enhanced, and the search accuracy of the PSO algorithm improved.
5) The maximum number of iterations of the algorithm is related to the running time, and the

online identification of parameters is realized. From the simulated and experimental results, it can be
concluded that the proposed method has high identification accuracy.

This paper’s remaining sections are organized as follows. Section 2 describes the mathematical
model of the PMSWG. The principle and function of the suggested method are depicted in Section 3.
The principle and design process of parameter identification are presented in Section 4. The pros and
cons of the method are examined by simulation and experiments in Section 5, and Section 6 gives the
conclusion.

2. MATHEMATICAL MODEL OF PMSWG

In the d-q coordinate system, the PMSWG equation is written as:
ud = Rsid + Ld

did
dt

− ωeLqiq

uq = Rsiq + Lq
diq
dt

+ ωeLdid + ωeψf

(1)

where ud, uq are the stator voltages; id, iq are the stator currents; ωe is the electrical angular velocity;
ψf is the magnetic chain of permanent magnets; PMSWG inductance Ld = Lq = Ls; Rs is the resistance
of the stator winding.

When the motor operates stably, the differential term is approximately considered as 0, did
dt = 0,

diq
dt = 0. Under this condition, Formula (1) can be simplified as:{

ud = Rsid +−ωeLqiq
uq = Rsiq + ωeLdid + ωeψf

(2)

There are four parameters to be identified in Formula (2), but there are only two equations. The
equations are rank-deficient equations and have numerous solutions. In conventional vector control, the
id = 0 control strategy is generally used to achieve decoupling of the motor. On this basis, a negative
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sequence current with id = −2 is injected into the d-axis to obtain a fourth-order full rank equation
system: 

ud0(k) = −ωe0(k)Lqiq0(k)

uq0(k) = Rsiq0(k) + ωe0(k)ψf

ud1(k) = Rsid1(k)− ωe1(k)Lqiq1(k)

uq1(k) = Rsiq1(k) + ωe1(k)Ldid1(k) + ωe1(k)ψf

(3)

where variables with subscript “0” are under the control policy of id = 0, and variables with subscript
“1” are under the control policy of id = −2.

The data collection of the two methods is shown in Figure 1 below. In Formula (3), ωe0(k), iq0(k),
ud0(k), uq0(k) are the k-th sampled data in 0–t1 time, and ωe1(k), ud1(k), uq1(k), id1(k), iq1(k) are the
k-th sampled data in t1–t2 time.

Figure 1. Data sampling diagram.

3. PARTICLE SWARM OPTIMIZATION

PSO is a type of evolutionary calculation technology, submitted by Eberhart and Kennedy in 1995
[22]. The basic idea of the algorithm is to enable the individual optimal value Pbest and group optimal
value Gbest to be calculated. In the iterative process, the position with the smallest fitness value is
continuously approached, and the optimal solution to the problem can be obtained. Compared with
other intelligent algorithms, the advantages of simple algorithm, high efficiency, and fast search speed
are reflected in the PSO. Therefore, PSO is widely used in the field of PMSWG parameter identification.
Its update formula is written as follows:{

vk+1
i = ωvki + c1r1

(
P k
best − xki

)
+ c2r2

(
Gk

best − xki
)

xk+1
i = xki + vk+1

i

(4)

where vi and xi are the velocity and position of particle; Pbest and Gbest are the best positions for
individuals and populations; k is the number of iterations; r1 and r2 are random numbers between 0
and 1; c1 and c2 are individual and population learning factors; ω is the inertia weight.

The flowchart of particle swarm optimization identification is shown in Figure 2 below.

3.1. Dynamically Regulation Inertia Weight (DRPSO)

PSO performance is affected by inertia weight ω. In this paper, the strategy adopting exponential

function is controlled by the weight ω. When the number of generations increases, e−
t

Tmax is nonlinearly
reduced. The betarnd is a random number generated by a beta distribution. In the later iteration
period of the algorithm, the global search ability of the algorithm can be increased, and the possibility
of the algorithm falling into the local optimum can be reduced. An inertial adjustment factor is added
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Figure 2. PSO parameter identification flow chart.

to control the deviation degree of the inertial weight, making the adjustment of ω more reasonable. The
inertial weight expression is expressed as:

ω = ωmin + (ωmax − ωmin) ∗ e−
t

Tmax + δ ∗ betarnd(p, q) (5)

where ωmax is the initial inertia weight, taken as 0.9; ωmin is the final inertia weight, taken as 0.4; t is the
current number of iterations; Tmax is the maximum number of iterations; δ is the inertial adjustment
factor, taken as 0.1; p = 1, q = 3.

It can be seen from Formula (5) that in the identification process, the inertia weight ω is decreased
nonlinearly. Meanwhile, the random adjustment strategy of beta distribution is introduced to generate
a random quantity to adjust ω. Through this method, the search ability in the early stage of PSO is
enhanced, and the search accuracy in the later stage of PSO is improved.

3.2. PSO Algorithm of Average Best Position (MDRPSO)

On the basis that the inertia weight is dynamically adjusted, the average best position algorithm is
introduced. In this algorithm, the experience of other particles in flight should be learned by the
current particle. Mathematically, the strategy is defined as the average of the best positions of all
particles. The formula is expressed as:

Pmd =
1

m

∑m

i=1
Pid =

1

m
(P1 + P2 + P3 + ...+ Pm) (6)

Update Equation (4) to{
vk+1
i = ωvki + c1r1

(
P k
md − xki

)
+ c2r2

(
Gk

best − xki
)

xk+1
i = xki + vk+1

i

(7)
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After the particle velocity update formula is updated from Formula (2) to Formula (5), the amount
of information obtained by the particles increases. When the self-optimal position information Pi is
referenced, in the average optimal position strategy, the empirical information of other particles is also
referenced. When this strategy is introduced, the ability of particle swarms to work together is improved,
and the ability of the algorithm to search globally is also enhanced. As a result, the behavior of particles
can be better determined. An improved algorithm can increase its potential to be optimized, and the
probability of the algorithm falling into a local optimum is reduced.

3.3. Adaptive Search PSO Algorithm (ASMDRPSO)

On the basis that the average best position strategy is introduced, in order to avoid the occurrence of
PSO falling into a local optimum, in this paper, an adaptive learning radius is added to the update
formula. By this way, the particle search range is expanded, the diversity of the population enhanced,
and the search accuracy of the PSO algorithm improved. The adaptive search radius Hk is expressed
as:

Hk =
Pbest +Gbest

2
+
Pbest −Gbest

2
∗ 1

k + 1
∗ sin(2πr) (8)

where r is a random number between 0 and 1.
After adding the adaptive search radius, Formula (7) is rewritten as:{

vk+1
i = ωvki + c1r1

(
P k
md − xki

)
+ c2r2

(
Gk

best − xki
)
+ c3r3

(
Hk − xki

)
xk+1
i = xki + vk+1

i

(9)

where c3 is a non-negative constant, and r3 is a random number between 0 and 1.
In the PSO algorithm where the adaptive search radius is added, the learning vector is added

to the velocity equation, then, the particle velocity update formula is updated from Formula (7) to
Formula (9). In this way, the particle search radius is increased; the local optima can be avoided; better
locations can be found; and particles can be made to depart the existing zone. It can be concluded that
the diversity of the population is enhanced, and the convergence accuracy is improved.

4. PRINCIPLE OF PARAMETER IDENTIFICATION

For a system in which the model is known but the parameters are unknown, the parameter identification
problem can be used as an optimization problem. The idea of PMSWG parameter identification is that
the difference between the output of the reference model and the adjustable model is calculated, and
the parameters of the adjustable model are continuously modified by the fitness function. In order to
minimize the difference between the reference model and adjustable model, the optimal solution to the
output of the algorithm is the identified motor parameters. The motor dynamic model can be expressed
as: {

ẋ = f(ρ, x, u)

ẏ = g(ρ, x)
(10)

where x is the state variable, ρ the actual parameter, u the system input, and y the system output.
For parameters of the motor to be identified, an adjustable model with the same structure is

designed. {
ˆ̇x = f(ρ̂, x, u)
ˆ̇y = g(ρ̂, x)

(11)

where ˆ̇x is the state variable of the adjustable model, ρ̂ the actual adjustable parameter, and ˆ̇y the
adjustable model output.

In order for the parameter ρ to be identified, the outputs of the reference model and adjustable
model need to be compared. The schematic diagram of parameter identification is shown in Figure 3.
ud, uq, id, iq are the voltages and currents on d-axis and q-axis; Rs is the stator resistance; Ld, Lq are
the stator inductances of the d-axis and q-axis; ωe is the electrical angular velocity; ψf is the permanent
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Figure 3. Schematic diagram of PMSWG parameter identification.

magnet flux linkage. The outputs ˆ̇id and ˆ̇iq of the adjustable model are calculated by Equation (1).
By calculating the fitness function, the corresponding fitness values of stator resistance Rs, quadrature
and direct axis inductance Ld and Lq, and permanent magnet flux ψf particles are obtained. After
comparison, the particle with the best position is selected to participate in the next operation iteration.
This loops until the value of the fitness function approaches zero, or the maximum number of iterations
is reached, when the loop is stopped. The values of the output resistance, inductance, and flux linkage
can be considered as the real values of the system. For the PMSWG vector control system, the fitness
function is defined as:

C(Rs, Ld, Lq, ψf ) =
(
id − ˆ̇id

)2
+

(
iq − ˆ̇iq

)2
(12)

The identification steps of ASMDRPSO algorithm are as follows:
Step 1: Collect electrical signals, including current and voltage in the quadrature axis and direct

axis and rotational speed.
Step 2: Set relevant initial parameters, such as population size, inertia weight, individual and group

learning factors.
Step 3: Update the speed and position of each particle, and calculate the fitness function value of

each particle.
Step 4: Compare the fitness value of each particle with the best location pbest in the history of

the individual, and the memory retains the least fitness solution to update the pbest.
Step 5: Compare the fitness value of each particle with the best location gbest in the population

history, and the memory retains the solution with the lowest fitness to update the gbest.
Step 6: Judge whether the termination condition is reached. If the maximum number of iterations

is reached, the memory outputs the pbest, and the algorithm operation ends. Otherwise, return to
step 3 to continue the next cycle.

5. SIMULATION AND EXPERIMENTAL ANALYSIS

5.1. Simulation Analysis

In order to confirm the algorithm’s effectiveness, the parameter identification model is established in
Matlab/Simulink. The schematic diagram is shown in Figure 4.

Motor rated parameters are shown in Table 1.
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Figure 4. Structure block diagram of vector control.

Table 1. Main parameters of the motor.

Parameter numerical value

polar logarithm 4

Stator resistance/Ω 0.958

Stator d-axis inductance/mH 0.0012

Stator q-axis inductance/mH 0.0012

Permanent magnet flux linkage/Wb 0.1827

Rated speed/(r/min) 1000

Rated Power (kW) 1.0

Rated voltage/V 380

In the simulation, the motor parameters are set to: in closed-loop speed control, the given speed
is 1000 r/min, and the population size is set to 30. The number of iterations is taken as the ratio of
running time to sampling time. The learning factor C1 = C2 = 1.6, and the running time of the
simulation system is taken as 0.4 s and the sampling time taken as 1e − 6 s. ASMDRPSO, MDRPSO,
DRPSO and PSO were run 5 times at a torque of 10N·m and a speed of 1000 r/min, and the average
value was taken as the final output value.

The identification results and errors are shown in Table 2.
It can be seen from Table 2 that in the PSO algorithm, it is easy to be trapped in local optimization,

and the shortcomings of large precision errors are enlarged. The maximum recognition error is calculated
to be 8.53%, and the convergence rate is slow in the later stage. The accuracy of PSO is surpassed
by the improved DRPSO, MDRPSO, ASMDRPSO algorithms, and the error accuracy of ASMDRPSO
is controlled within 2.3%. The advantages of good robustness, high recognition accuracy and fast
convergence speed are reflected in ASMDRPSO.
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Table 2. Average results of motor parameter identification under selected working conditions.

Parameter PSO DRPSO MDRPSO ASMDRPSO

Stator resistance/Ω 1.023 0.9987 0.9892 0.9873

Error/% 6.78% 4.25% 3.26% 2.11%

Stator d-axis and q-axis inductance/mH 0.001282 0.001253 0.001239 0.001225

Error/% 6.83% 4.42% 3.25% 2.08%

Permanent magnet flux linkage/Wb 0.18426 0.18376 0.18346 0.18311

Error/% 8.53% 5.80% 4.16% 2.24%

5.2. Experimental Verification

In this paper, the RT-LAB experimental platform is used to realize the hardware-in-the-loop simulation
(HILS) of the PMSWG drive system. The RT-LAB experimental platform is shown in Figure 5, and the
hardware-in-the-loop simulation configuration diagram of the PMSWG control system RT-LAB is shown
in Figure 6. The platform contains a TMS320F2812 DSP controller, an RT-LAB (OP5600) simulator, a
motor drive model built in RT-LAB, and a host computer. The DSP controller with running algorithm
is TMS320F2812, and RT-LAB plays inverter and PMSM. The sampling frequency of the experimental
system is 10 kHz.

Figure 5. RT-LAB experimental platform.

Figure 6. RT-LAB hardware in the loop system configuration.
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The experiment is conducted under conditions similar to those in the simulation, and their
identification curves are presented in Figures 7–9. The experimental results for all methods under
general situation are shown in Table 3.

The stator resistance identification curve under the selected working condition is shown in Figure 7.

(a) (b)

(c) (d)

Figure 7. Identification curve of stator resistance under specified working conditions. (a) PSO. (b)
DRPSO. (c) MDRPSO. (d) ASMDRPSO.

Table 3. Experiment results of motor parameter identification under selected operating conditions.

Parameter PSO DRPSO MDRPSO ASMDRPSO

Stator resistance/Ω 1.0170 0.9975 0.9878 0.9760

Error/% 6.78% 4.25% 3.26% 2.11%

Stator d-axis and q-axis inductance/mH 1.2790 1.2480 1.2365 1.2185

Error/% 6.83% 4.42% 3.25% 2.08%

Permanent magnet flux linkage/Wb 0.1843 0.1837 0.1833 0.1830

Error/% 8.53% 5.80% 4.16% 2.24%
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The identification curve can be analyzed from the figure in two ways: stabilization time and error. In the
PSO, the identified resistance value differed from the reference value by nearly 6.16%. The recognition
error rate of DRPSO is calculated as 4.12%, MDRPSO is calculated as 3.11%, and ASMDRPSO is
calculated as 1.87%. The PSO convergence time is 0.34 s, the DRPSO is shortened by 0.08 s, the
MDRPSO is shortened by 0.17 s, and the ASMDRPSO is shortened by 0.24 s.

The permanent magnet flux linkage identification curve under the selected working condition is
shown in Figure 8. It can be seen from Figure 8 that ASMDRPSO has the fastest response speed. The
shorter the time to reach the stable value, the smaller the overshoot fluctuation, followed by MDRPSO
and DRPSO, and the worst PSO effect. The identification errors of PSO, DRPSO, MDRPDSO and
ASMDRPSO are calculated to be 8.76%, 5.47%, 3.28%, and 1.64%, respectively. It can be seen that
ASMDRPSO has the best control effect.

(a) (b)

(c) (d)

Figure 8. Identification curve of permanent magnet flux linkage under specified working conditions.
(a) PSO. (b) DRPSO. (c) MDRPSO. (d) ASMDRPSO.

The inductance identification curves are shown in Figures 9(a)–(d). It can be seen from Figure 9
that ASMDRPSO is closest to the actual curve, and the advantage of the smallest overshoot is reflected.
The shortest equilibration time and strongest robustness are reflected in ASMDRPSO. The recognition
time of PSO is 0.34 s, and the recognition error is calculated to be 6.58%. The recognition time of
DRPSO is 0.26 s, and the recognition error is calculated as 4%. The recognition time of MDRPSO is
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(a) (b)

(c) (d)

Figure 9. Identification curve of stator d-axis and q-axis inductance under specified working conditions.
(a) PSO. (b) DRPSO. (c) MDRPSO. (d) ASMDRPSO.

0.18 s, and the recognition error is calculated as 3.04%. The recognition time of ASMDRPSO is 0.09 s,
and the recognition error is calculated as 1.54%.

The experimental results of the four identification methods are shown in Table 3.
In summary, the problems of long recognition times and large recognition errors are reflected

in the traditional PSO. The recognition accuracy and speed of the improved ASMDRPSO, DRPSO,
and MDRPSO have been improved. Among them, ASMDRPSO has the best recognition effect, with a
calculated recognition error of less than 1.9% and a recognition time of less than 0.1 s. MDRPSO is close
to ASMDRPSO in accuracy, but the advantages of faster convergence and smaller errors are reflected
in ASMDRPSO. From the experimental results, it can be concluded that ASMDRPSO outperforms the
other three methods in terms of parameter recognition and has high recognition accuracy.

6. CONCLUSION

In this research, a novel ASMDRPSO parameter identification technique is suggested, and the full-
rank identification equation is established. The problem of poor accuracy of traditional particle swarm
optimization can be improved by this method, which can also be better applied to the parameter
identification of PMSWG. According to the simulation and experimental results under the selected
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working conditions, the following conclusions are drawn:
1) The maximum iteration number of the algorithm is related to the running time. The online

identification of PMSWG stator resistance, quadrature and direct axis inductance, and permanent
magnet flux linkage are realized.

2) In this paper, dynamic adjustment of inertia weight, introduction of average optimal position,
and increase of adaptive learning radius are adopted in parameter identification. It is realized that the
optimization ability of the algorithm is maximized, the diversity of the population enhanced, and the
scope of exploration expanded.

3) The advantages of high recognition accuracy, small error rate, and fast convergence speed are
shown in ASMDRPSO. Compared with PSO, DRPSO, and MDRPSO, the recognition accuracy is
improved, the robustness enhanced, and the convergence time shortened.

4) Under the specified working conditions, the strong parameter tracking ability of ASMDRPSO is
reflected, and the identification error is controlled within 1.9%. In comparison with PSO, the recognition
error is reduced by 4%, and the time to reach equilibrium is shortened by 0.2 s.
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