Vol. 115
Latest Volume
All Volumes
PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-08-13
Hexagonal Split Ring Resonator Enclosed Circular Split Ring Resonator Inspired Dual-Band Antenna for Sub-6 GHz 5G NR and IEEE 802.11ba/Be Applications
By
Progress In Electromagnetics Research C, Vol. 115, 1-15, 2021
Abstract
In this article, a novel Hexagonal Split-Ring Resonator enclosed Circular Split-Ring Resonator (HSRR-CSRR) inspired printed antenna is presented for sub-6 GHz 5G NR and IEEE 802.11ba/be applications. The proposed antenna comprises an HSRR-CSRR and a D-SHSRR metamaterial unit cell with a partial ground plane. The designed antenna is printed on a low-cost FR-4 substrate with dielectric constant εr of 4.4, thickness of 1.6 mm, and loss tangent of 0.02. An HSRR-CSRR metamaterial structure is designed to get the three distinct resonance frequencies at 3.5 GHz, 5.05 GHz, and 6.2 GHz, respectively. To cover the entire band of Sub-6 GHz 5G NR (5-6 GHz), a Double-slit Single Hexagonal Split Ring Resonator (D-SHSRR) is designed for 5.8 GHz and loaded along with the HSRR-CSRR. The operating principle, equivalent circuit, and parametric extraction of the HSRR-CSRR structure are examined. Compared to the conventional antenna, the proposed antenna has a compact size of (0.38λg×0.52λg×0.03λg). The antenna parameters have been investigated using Ansys HFSS 15.0 software. The measured and simulated results are in good agreement.
Citation
Pitchai Rajalakshmi, and Nagarajan Gunavathi, "Hexagonal Split Ring Resonator Enclosed Circular Split Ring Resonator Inspired Dual-Band Antenna for Sub-6 GHz 5G NR and IEEE 802.11ba/Be Applications," Progress In Electromagnetics Research C, Vol. 115, 1-15, 2021.
doi:10.2528/PIERC21070504
References

1. Marcus, M. J., "5G and `IMT for 2020 and beyond' [spectrum policy and regulatory issues]," IEEE Wireless Communication, Vol. 22, No. 4, 2-3, Aug. 2015.
doi:10.1109/MWC.2015.7224717

2. "IEEE P802.11 Task Group BA --- Wake-up Radio Operation,", www.ieee802.org, retrieved Aug. 12, 2020.
doi:10.1109/MWC.2015.7224717

3. Shankland, S., "Wi-Fi 6 is barely here, but Wi-Fi 7 is already on the way --- With improvements to Wi-Fi 6 and its successor, Qualcomm is working to boost speeds and overcome congestion on wireless networks," CNET, Retrieved Aug. 20, 2020.

4. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 1st Ed., Wiley-IEEE Press, Hoboken, NJ, ISBN-10: 0471669857, 2006.

5. Marque's, R, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Wiley, Hoboken, NJ, ISBN: 978-0-471-74582-2, 2007.
doi:10.1002/9780470191736

6. Gunavathi, N. and D. Sriram Kumar, "Miniaturized unilateral coplanar waveguide-fed asymmetric planar antenna with reduced radiation hazards for 802.11ac application," Microwave and Optical Technology Letters, Vol. 58, No. 2, 337-342, 2016.
doi:10.1002/mop.29599

7. Gunavathi, N. and D. Sriram Kumar, "CPW-fed monopole antenna with reduced radiation hazards towards human head using metallic thin-wire mesh for 802.11ac application," Microwave and Optical Technology Letters, Vol. 57, No. 11, 2684-2687, 2015.
doi:10.1002/mop.29411

8. Gunavathi, N. and D. Sriram Kumar, "Estimation of resonant frequency and bandwidth of compact unilateral coplanar waveguide-fed ag shaped monopole antennas using artificial neural network," Microwave and Optical Technology Letters, Vol. 57, No. 2, 337-342, 2015.
doi:10.1002/mop.28838

9. Hu, J. R. and J. S. Li, "Compact microstrip antennas using CSRR structure ground plane," Microwave and Optical Technology Letters, Vol. 56, No. 1, 117-120, 2014.
doi:10.1002/mop.28023

10. Chaturvedi, D. and S. Raghava, "A compact metamaterial inspired antenna for WBAN applications," Wireless Personal Communication, Vol. 105, 1449-1460, 2019.
doi:10.1007/s11277-019-06153-z

11. Imaculate Rosaline, S. and S. Raghavan, "Metamaterial inspired split ring monopole antenna for WLAN applications," ACES Express Journal, Vol. 1, No. 5, 2016.

12.. Rajalakshmi, P. and N. Gunavathi, "Gain enhancement of cross-shaped patch antenna for IEEE 802.11ax Wi-Fi applications," Progress In Electromagnetics Research Letters, Vol. 80, 91-99, 2018.
doi:10.2528/PIERL18091401

13. Garg, P. and P. Jain, "Design and analysis of a metamaterial inspired dual-band antenna for WLAN applications," International Journal of Microwave and Wireless Technologies, 2019.

14. Samson Daniel, R., R. Pandeeswari, and S. Raghavan, "A Compact metamaterial loaded monopole antenna with offset-fed microstrip line for wireless applications," International Journal of Electronics and Communication (AEU), Vol. 83, 88-94, 2018.
doi:10.1016/j.aeue.2017.08.030

15. Wu, K., Y. Huang, R. Wen, J. Li, and G. Wen, "Comparison analysis of single loop resonator-based miniaturized triple-band planar monopole antennas," International Journal of Antennas and Propagation, 2015.

16. Lajevardi, M. E. and M. Kamyab, "Ultra miniaturized metamaterial --- Inspired SIW textile antenna for off-body applications," IEEE Antenna and Wireless Propagation Letters, Vol. 16, 3155-3158, 2017.
doi:10.1109/LAWP.2017.2766201

17. Si, L. M., Q. L. Zhang, W. D. Hu, W. H. Yu, et al. "A uniplanar triple-band dipole antenna using complementary capacitively-loaded loop," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 743-746, 2015.
doi:10.1109/LAWP.2015.2396907

18. Li, K., C. Zhu, L. Li, Y. M. Cai, and C. H. Liang, "Design of electrically small metamaterial antenna with ELC and EBG loading," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 678-681, 2013.
doi:10.1109/LAWP.2013.2264099

19. Ameen, M. and R. K. Chaudhary, "Dual-layer and dual-polarized metamaterial inspired antenna using circular --- Complementary split ring resonator mushroom and metasurface for wireless applications," International Journal of Electronics and Communication (AEU), Vol. 113, 152977, 2019.

20. Rajalakshmi, P. and N. Gunavathi, "Compact complementary folded triangle split ring resonator triband mobile handset planar antenna for voice and Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 91, 253-264, 2019.
doi:10.2528/PIERC19021806

21. Rajalakshmi, P. and N. Gunavathi, "Compact modified hexagonal spiral resonator-based tri-band patch antenna with octagonal slot for Wi-Fi/WLAN applications," Progress In Electromagnetics Research C, Vol. 106, 77-87, 2020.
doi:10.2528/PIERC20081803

22. Rajabloo, H., V. A. Kooshki, and H. Oraizi, "Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band applications," International Journal of Electronics and Communication (AEU), Vol. 73, 144-149, 2017.
doi:10.1016/j.aeue.2016.12.027

23. Si, L.-M. and X. Lv, "CPW-fed multiband omnidirectional planar microstrip antenna using metamaterial resonators for wireless communications," Progress In Electromagnetic Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404

24. Xi, L., H. Zhai, and L. Li, "A compact low profile dual-polarized filtering antenna with metamaterial for wide-band base station applications," Microwave and Optical Technology Letters, Vol. 60, 64-69, 2017.

25. Dong, Y., H. Toyao, and T. Itoh, "Compact circularly-polarized patch antenna loaded with metamaterial structures," IEEE Transactions on Antenna and Propagation, Vol. 59, No. 11, 4329-4333, 2011.
doi:10.1109/TAP.2011.2164223

26. Nasimuddin, N., Z. N. Chen, and X. Qing, "Bandwidth enhancement of a single-feed circularly polarized antenna using a metasurface: Metamaterial-based wide-band circularly polarized rectangular microstrip antenna," IEEE Antennas and Propagation Magazine, Vol. 58, No. 2, 58-46, 2016.
doi:10.1109/MAP.2016.2520257

27. Joshi, A. and R. Singhal, "Probe-fed wide-band AMC-integrated hexagonal antenna with uniform gain characteristics for WLAN applications," Wireless Networks, 2020.

28. Gong, X., L. Tong, and Y. Tian, "Design of a microstrip-fed hexagonal Shape UWB antenna with triple band-notched bands," Progress In Electromagnetic Research C, Vol. 62, 77-87, 2016.
doi:10.2528/PIERC15101701

29. Heydari, S., K. Pedram, Z. Ahmed, and F. B. Zarrabi, "Dual-band monopole antenna based on metamaterial structure with narrowband and UWB resonances with reconfigurable quality," AEU --- International Journal of Electronics and Communications, Vol. 81, 92-98, 2017.
doi:10.1016/j.aeue.2017.07.015

30. Islam, S. S., T. Alam, M. R. Iqbal Faruque, and M. T. Islam, "Design and analysis of a Complementary Split-Ring Resonator (CSRR) metamaterial-based antenna for wide-band application," Science and Engineering of Composite Materials, Vol. 24, No. 5, 2015.

31. Yves, S., T. Berthelot, M. Fink, G. Lerosey, and F. Lemoult, "Left-handed band in an electromagnetic metamaterial induced by subwavelength multiple scattering," Appl. Phys. Lett., Vol. 111101, Mar. 2018.

32. Chen, H., J. J. Zhang, Y. Bai, Y. Luo, and L. Ran, "Experimental retrieval of the effective parameters of metamaterial based on a waveguide method," Optics Express, Vol. 14, No. 26, 2006.

33. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from re ection and transmission coefficients," Phys. Rev. B, 2002.

34. Pandey, A. K., M. Chauhan, V. K. Killamsety, and B. Mukherjee, "High gain compact rectangular dielectric resonator antenna using metamaterial as superstrate," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 12, 1-10, Wiley, 2019.

35. Sinha, M., V. Killamsetty, and B. Mukherjee, "Near field analysis of RDRA loaded with split ring resonators superstrate," Microwave and Optical Technology Letters, Vol. 60, No. 2, 472-478, Wiley, 2018.
doi:10.1002/mop.30995

36. Chauhan, M., A. Rajput, and B. Mukherjee, "Wideband circularly polarized low profile dielectric resonator antenna with meta superstrate for high gain," AEU --- International Journal of Electronics and Communication, 128, 2021.