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Hexagonal Split Ring Resonator Enclosed Circular Split Ring
Resonator Inspired Dual-Band Antenna for Sub-6GHz

5G NR and IEEE 802.11ba/be Applications

P. Rajalakshmi* and N. Gunavathi

Abstract—In this article, a novel Hexagonal Split-Ring Resonator enclosed Circular Split-Ring
Resonator (HSRR-CSRR) inspired printed antenna is presented for sub-6GHz 5G NR and IEEE
802.11ba/be applications. The proposed antenna comprises an HSRR-CSRR and a D-SHSRR
metamaterial unit cell with a partial ground plane. The designed antenna is printed on a low-cost
FR-4 substrate with dielectric constant εr of 4.4, thickness of 1.6mm, and loss tangent of 0.02. An
HSRR-CSRR metamaterial structure is designed to get the three distinct resonance frequencies at
3.5GHz, 5.05GHz, and 6.2GHz, respectively. To cover the entire band of Sub-6GHz 5G NR (5–6GHz),
a Double-slit Single Hexagonal Split Ring Resonator (D-SHSRR) is designed for 5.8GHz and loaded
along with the HSRR-CSRR. The operating principle, equivalent circuit, and parametric extraction of
the HSRR-CSRR structure are examined. Compared to the conventional antenna, the proposed antenna
has a compact size of 0.38λg × 0.52λg × 0.03λg. The antenna parameters have been investigated using
Ansys HFSS 15.0 software. The measured and simulated results are in good agreement.

1. INTRODUCTION

The International Telecommunication Union (ITU) has recently declared the following spectrum for
5G, including the 3.4–3.6GHz, 5–6GHz, 24.25–27.50GHz, 37.0–40.5GHz, and 66–76GHz bands [1].
The IEEE 802.11 working group will release a new standard of 802.11 ba/be to improve the energy-
efficient and extremely high throughput [2, 3]. Hence, there is a necessity to design a dual-band/wide-
band antenna that is applicable to the upcoming IEEE standards (IEEE 802.11ba (2.4/5GHz) and
IEEE 802.11be (2.4/5/6GHz)) and Sub-6GHz 5G applications. Metamaterials are artificial materials
that are not found in nature. They exhibit various properties such as negative permittivity, negative
permeability, and negative refractive index. The use of metamaterials in antenna design reduces the
size of the antenna and improves other antenna parameters such as bandwidth, gain, and number of
frequency band [4, 5].

The CPW fed planar antennas [6–8], a spiral CSRR loaded antenna [9], and a circular SRR inspired
antenna [10] are proposed for single-band operation. A hexagonal split-ring metamaterial-inspired dual-
band antenna [11], a circular CSRR inspired cross-shaped dual-band antenna [12], and a triangular
SRR metamaterial-inspired dual-band antenna [13] are designed for WLAN applications. An SRR
inspired antenna [14], an electric LC loading based on Koch shaped fractal metamaterial antenna [15],
a metamaterial slot inspired substrate waveguide antenna [16], a complementary capacitive-loaded
loop antenna [17], a metamaterial with ELC and EBG loading antenna [18], a metamaterial inspired
mushroom loaded antenna [19], a dumbbell shaped metamaterial inspired antenna [20], and a modified
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complementary hexagonal spiral resonator inspired antenna [21] have been realized for multiband
performances, which are not focused on specific applications. A narrow-band single-loop resonator
integrated monopole antenna is presented [22]. A low gain metamaterial-inspired antenna has been
discussed in [23]. A complex profile and large dimension AMC reflector-based antenna has been
proposed in [24]. For the miniaturization concept, a complex metamaterial-inspired RIS antenna has
been developed in [25]. A complex 7 × 7 rectangular metasurface structure-based antenna has been
designed for bandwidth enhancement [26]. An AMC integrated probe fed hexagonal ring antenna
is presented for S-band applications with very low antenna efficiency of 45% [27]. A microstrip-fed
hexagonal shape monopole antenna and a circular SRR-based monopole antenna have been designed
for UWB band applications [28, 29]. A double negative circular CSRR antenna has been designed for
5G applications, which fails to cover the 3.4–3.6GHz frequency band of sub 6GHz 5G applications [30].

All of the earlier researchers have examined concerns such as large size, single band, narrow
bandwidth, and design complexity. However, it is unsuitable for upcoming 5G applications. To overcome
all these challenges, this work has been investigated, analyzed, and validated. The proposed antenna
employs HSRR-CSRR and D-SHSRR metamaterial structures to attain the required dual-band, size
reduction, and bandwidth enhancement. These unique feature of the proposed antenna that is most
suitable for the upcoming IEEE 802.11ba (2.4/5GHz), IEEE 802.11be (2.4/5/6GHz), and Sub-6GHz
(3.4–3.6GHz and 5–6GHz) 5G NR Wi-Fi applications.

2. ANTENNA STRUCTURE AND DESIGN METHODOLOGY

The evolutionary stages of the proposed antenna are illustrated in Figure 1. The final geometry of the
proposed antenna is shown in Figure 2. It is implemented on a double-sided Printed Circuit Board
(PCB) with FR4 substrate of permittivity (εr), thickness (h), and loss tangent δ of 4.4, 1.6mm and
0.02, respectively, with a compact size of 20× 27× 1.6mm3. The antenna comprises a 50Ω microstrip
feed line, an HSRR-CSRR, a D-SHSRR on the top of the PCB, and a partial ground plane is entrenched
on the bottom of the PCB.

(a) (b) (c)

Figure 1. Design of evolutionary stages of the proposed antenna. (a) Antenna 1. (b) Antenna 2. (c)
Proposed antenna

Initially, the co-directional concentric HSRR is designed for 3.5GHz. Hence, the length (L3.5GHz)
of the outer concentric hexagonal ring has taken as a half of the guided wavelength.

L3.5GHz =
c

2fr
√
εeff

= 26.1mm = 3S1 (1)

where c is the velocity of light in air; S1 is the side of the outer hexagonal ring; εeff is the effective
dielectric constant of the substrate.

In antenna 1, the outer concentric hexagonal split ring is connected to the inner concentric
hexagonal split ring with the help of a metallic stub. The metallic stub’s presence modifies the
current distribution of the concentric HSRR and produces dual resonance mode at 3.57GHz (TM10)
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Figure 2. The geometry of the proposed antenna.

and 6.28GHz (TM20). The length (L6.28GHz) of the concentric hexagonal ring is calculated using
Equation (2). A single CSRR is designed for 5.3GHz using the Equation (3)

L6.28GHz =
c

4fr
√
εeff

= 13.08mm (2)

L5.3GHz =
c

2fr
√
εeff

= 2πr − g + L1 = 17.3mm (3)

where r and g are the radius and gap of the circular ring, respectively. Due to the coupling produced
by the stub (L1) with the single CSRR, antenna 2 has resonated at 3.47GHz, 4.95GHz, and 6.2GHz
to cover three different frequency bands 3.18–3.80GHz, 4.80–5.20GHz, and 6.07–6.23GHz. Finally,

Table 1. Optimized dimensions of the proposed antenna.

Parameters Dimensions (mm) Parameters Dimensions (mm)

L 27 W1 2.6

W 20 W2 1.2

LG 7.7 S1 8.7

Lf 10.5 S2 6.6

Wf 3.6 S3 2

s1 0.7 L1 2

R 2.4 w3 0.5

w2 0.7 g, g1 0.5

w1 0.5 h 1.6
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the radiating element looks like an HSRR-CSRR metamaterial structure. Moreover, to cover the entire
band of sub-6GHz 5G NR (5–6GHz), the two hexagonal split-ring resonators with two slits (D-SHSRR)
are designed for 5.8GHz. They are mounted on the top of the substrate as shown in Figure 1(c).

Based on the antenna’s parametric study, the antenna’s geometrical parameters are optimized and
listed in Table 1. Also, the simulated reflection coefficient (in dB) of the proposed antenna is shown in
Figure 3. From Figure 3, the proposed antenna resonates at 3.5GHz, 5.07GHz, and 6.1GHz. Finally,
the simulated 10 dB impedance bandwidth of the two operating bands are 15.88% (3.22–3.84GHz) and
27.02% (4.80–6.30GHz).
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Figure 3. Simulated reflection coefficient (dB) characteristics of the evolutionary stages of antenna.

3. HSRR-CSRR METAMATERIAL STRUCTURE DESIGN METHODOLOGY

The HSRR-CSRR structure is derived from a concentric HSRR and a single CSRR connected via
metallic stub. The dimension of the HSRR-CSRR is 20× 20mm2.

Figure 4 shows the equivalent circuit of the proposed HSRR-CSRR structure. The following
equation is used to find out the resonance frequency of the LC circuit.

fr =
1

2π
√

LeqCeq

(4)

Leq and Ceq are equivalent inductance and capacitance of the HSRR-CSRR structure. The following
formulas are used to determine the Leq and Ceq value of the structure [31].

L (nH) = 2 ∗ 10−4l

[
ln

(
l

w + t

)
+ 1.193 + 0.02235

w + t

l

]
Ca (5)

Here w, t, and l are the width, thickness, and length of the structure. The correction factor, Ca

Ca = 0.57− 0.145 ln
(w
h

)
(6)

Here h and w represent the height and width of the substrate.

C =
ε0εrA

d
(7)
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Figure 4. Equivalent circuit of the HSRR-CSRR metamaterial structure.

Here ε0 and εr represent the free space of permittivity and relative permittivity of the dielectric substrate
material. d and A represent the length of the split and the area of the structure.

The waveguide setup method was proposed by Chen et al. [32]. The wave guide setup of HSRR-
CSRR structure is shown in Figure 5. By using the S11 and S21 generated with HFSS, the negative
permeability of HSRR-CSRR is retrieved. The z (Characteristic impedance) and n (Refractive Index)
are computed by Equations (8) and (9), respectively. In a waveguide setup, Perfect Electric Conductor
(PEC) and Perfect Magnetic Conductor (PMC) boundary are assigned in y and z-direction, respectively.
The electromagnetic wave is propagated in the z-direction.

z =

√
(1 + S11)2 − S2

21

(1− S11)2 − S2
21

(8)

n =
1

kd
cos−1

[
1

2S21(1− S2
11 + S2

21)

]
(9)

ε =
n

z
(10)

µ = nz (11)

The negative permeability (µ) of the HSRR-CSRR metamaterial structure is calculated using the
method suggested by Smith et al., which is given in Equation (11) [33]. The proposed metamaterial
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Figure 5. Simulation waveguide setup of the HSRR-CSRR metamaterial inspired structure.

Figure 6. Transmission (S11) and Reflection (S21) characteristics of the HSRR-CSRR structure.

characteristics of the HSRR-CSRR structure are validated from its transmission, reflection, and
permeability characteristics plots, as shown in Figure 6 and Figure 7. There are three negative
permeability dips at 3.5GHz, 5.2GHz, and 6.15GHz. The HSRR-CSRR structure’s negative
permeability property influenced the proposed antenna’s performance parameters such as size reduction
and multiband.
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Figure 7. The negative permeability of the HSRR-CSRR metamaterial structure.

4. PARAMETRIC STUDIES

More impact parameters of the antenna such as ground length (LG), hexagonal side length (S1), feed
width (Wf ), and circular ring radius (r) are studied, and simulated reflection coefficient characteristics
are plotted in Figures 8–11.

The effect of LG on the antenna reflection coefficient (dB) characteristics is illustrated in Figure 8.
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Figure 8. Simulated reflection coefficient characteristics (dB) of the variations of the ground length
(LG).
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Figure 9. Simulated reflection coefficient characteristics (dB) of the variations of the hexagonal ring
side length (S1).
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Figure 10. Simulated reflection coefficient characteristics (dB) of the variations of the feed width (Wf ).

With the increasing value of LG, the first resonance band of the proposed antenna is slightly increased,
and also, the second resonance band is inflated with poor impedance matching. Preferred dual bands
have been obtained at LG = 7.7mm. Figure 9 shows that by increasing S1 from 8.2mm to 9.2mm with
a step of 0.5mm, the dual bands (TM10 and TM20) are significantly affected. By decreasing the value
of S1, the first and second resonance frequencies of the antenna are increased. The S1 = 8.7mm is
chosen from the results, covering the desired dual-band (3.22–3.84GHz and 4.80–6.30GHz) with good
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Figure 11. Simulated reflection coefficient (dB) characteristics of the variations of the circular ring
radius (r).

impedance matching.
The reflection coefficient characteristics (dB) of various feed widths (Wf ) of the proposed antenna

from 3.1mm with a step of 0.5mm are shown in Figure 10. The impedance matching of the antenna
is dependent on the Wf . The first band of 3.22–3.84GHz and the second band of 4.80–6.30GHz
provide a good impedance matching at 3.6mm. Figure 11 shows the effect of circular ring radius (r) on
the antenna’s reflection coefficient characteristics (dB). By increasing the circular ring radius (r) from
2.3mm to 2.7mm with a step of 0.2mm, the resonant frequency of 5GHz is shifted to lower frequencies.
The desired resonance band is obtained at a circular ring radius (r) of 2.4mm.

Figure 12. The fabricated proposed antenna.
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5. RESULT AND DISCUSSION

The fabricated antenna is shown in Figure 12. The proposed antenna reflection coefficient (dB)
has been measured with the help of vector keysight field fox microwave analyzer N99917A. The
simulated and measured reflection coefficient results of the antenna are illustrated in Figure 13. It
is observed that the simulated and measured reflections of the coefficient results are in good agreement,
showing a dual-band operation with measured −10 dB impedance bandwidth of 625MHz (3225–
3850MHz), 2030MHz (4820–6850MHz). The obtained bandwidth covers the upcoming Wi-Fi band
(IEEE 802.11ba (2.4/5GHz)/IEEE 802.11be (2.4/5/6GHz)) and Sub-6GHz 5G NR (3.4–3.6GHz and
5–6GHz) applications. The antenna’s radiation efficiency is 97% at 3.5GHz, 91.23% at 5.05GHz, and
90.84% at 6.2GHz, respectively. It is clearly noted that more than 90% of antenna efficiency has been
obtained, which indicates that the antenna radiates well for the desired dual-band. The simulated gains
of 3.5GHz, 5.05GHz, and 6.2GHz are 1.78 dB, 1.83 dB and 2.3 dB, respectively.
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Figure 13. The simulated and measured reflection coefficient of the proposed antenna.

The simulated and measured radiation patterns on the x-z plane (E-plane) and x-y plane (H-plane)
plane for 3.5GHz, 5.05GHz, and 6.20GHz are shown in the Figures 14(a), (b), and (c), respectively.
It shows that the proposed antenna exhibits an omnidirectional radiation pattern in the H-plane (x-y
plane) at the proposed antenna’s respective bands. The E-plane radiation pattern (x-z plane) is a
dipole radiation pattern for all the proposed antenna operating bands.

The surface and vector current distribution of the HSRR-CSRR radiating element and the ground
plane for various frequencies is simulated and presented in Figure 15. Figure 15(a) shows the current
distribution at 3.52GHz. It can be well noted that maximum current is distributed on the two concentric
hexagonal rings and feed line. It can be concluded from Figure 15(a) that two concentric hexagonal rings
are most important in adjusting the lower resonance frequency (3.52GHz). Figure 15(b) represents the
surface and vector current distribution on the antenna for 5.05GHz. It can be noted that most of the
current is concentrated on the inner circular ring only. In contrast, a marginal current is symmetrically
distributed on the left/right side of the ring. Hence, the middle resonance frequency can be mainly
controlled through the circular ring. Figure 15(c) shows the surface current on the HSRR-CSRR as well
as on the ground for the resonant frequency of 6.2GHz. It is obvious from Figure 15(c) that the major
content of the current is concentrated on the upper and lower part of the two concentric hexagonal
rings.It can be well noted from this figure that the third resonance frequency is controlled by changing
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Figure 14. The simulated and measured radiation pattern of the proposed antenna. (a) 3.5GHz. (b)
5.05GHz. (c) 6.2GHz.
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(a)

(b)

(c)

Figure 15. Simulated surface and vector current distribution of the proposed antenna. (a) At 3.5GHz.
(b) At 5.05GHz. (c) At 6.2GHz.
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Table 2. Comparison between the proposed antenna with existing antenna.

Ref.

No.
Concept

Metamaterial

Functions

Antenna

Volume

(mm3)

No.

of

bands

Frequency

(GHz)

Impedance

Bandwidth

(%)

Measured

Gain

(dB)

Efficiency

(%)

[13]
Triangular

SRR
Multiband 768 2

2.40–2.48,

4.70–6.04

3.26,

4.56

2.28,

1.96

62.53,

93.25

[29]
Circular

SRR
Multiband 2560 2

1.00–3.00,

3.20–11.00
- 6.00 70.00

[30]
Circular

CSRR
Wide band 1000 1 4.49–21.85 -

1.05,

6.03

64.80,

92.52

[34]

Eight shaped

metamaterial

SRR

Gain

enhancement
160200 1 7.18–8.44 16.10 14.00 -

[35]
Circular

SRR

Gain

enhancement
180000 1 3.2–4.9 41.90 8.00 -

[36]
Rectangular

SRR

Gain

enhancement

and Wide

band

326095 1 9.7–12.3 26.80 11.90 78.00

Proposed

Work

HSRR-CSRR

and D-HSRR

Multiband

and

Bandwidth

enhancement

864 2
3.42–3.85,

4.82–6.85

11.82,

34.79

1.7,

1.6,

1.8

97.00,

91.23,

90.84

the width of the two concentric hexagonal rings.
A comparative analysis of different parameters such as physical size, number of operating bands,

percentage impedance bandwidth, gain, and efficiency of the designed antenna is done concerning the
previous literature and is illustrated in Table 2. It is apparent from Table 2 that the proposed antenna
provides bandwidth by keeping the antenna’s size small, with comparative gain and efficiency with that
of the existing antenna design. Also, it is simple in design for easy fabrication.

6. CONCLUSION

The proposed novel miniaturized HSRR-CSRR inspired printed antenna is designed, fabricated, and
tested. The size reduction of 51.23% is achieved using the HSRR-CSRR metamaterial structure. The
negative parameter of the HSRR-CSRR metamaterial structure has been investigated and verified
from the permeability graph. A D-SHSRR structure has been used for bandwidth enhancement. The
proposed antenna’s measured reflection coefficient (dB) results have shown good agreement with the
simulated ones. The antenna’s measured impedance bandwidths are about 625MHz in the first band of
3.225GHz–3.850GHz and 2030MHz in the second band of 4.82GHz–6.85GHz. The proposed antenna
has the measured maximum gains of 1.7 dB, 1.6 dB, and 1.8 dB at 3.5GHz, 5.05GHz, and 6.2GHz,
respectively, and maximum efficiency of about 90%. This antenna meets the requirements of upcoming
Sub-6GHz 5G NR and IEEE 802.11ba/be (Wi-Fi) applications.
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