Vol. 85

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-07-09

Gain Enhancement of a Millimeter Wave Antipodal Vivaldi Antenna by Epsilon-Near-Zero Metamaterial

By Shaza El-Nady, Hany Mahmoud Zamel, Moataza Hendy, Abdelhalim A. Zekry, and Ahmed Attiya
Progress In Electromagnetics Research C, Vol. 85, 105-116, 2018
doi:10.2528/PIERC18050302

Abstract

In this paper a compact antipodal Vivaldi antenna with dimensions of 40×85 mm2 for Ka band is presented. To enhance the antenna gain, epsilon near zero metamaterial (ENZ) unit cells are embedded at the same plane of the Vivaldi flare aperture. These ENZ unit cells have the advantage of confining the radiated fields with additional compact size. The obtained antenna exhibits an ultra-wide bandwidth from 23 GHz to 40 GHz with a reflection coefficient less than -10 dB. This is suitable for 5G applications at both 28 and 38 GHz. The antenna gain in this frequency band is found in the range from 14 to 17.2 dBi. The proposed antenna is designed by using CST-MW Studio, and the results are verified with experimental measurements.

Citation


Shaza El-Nady, Hany Mahmoud Zamel, Moataza Hendy, Abdelhalim A. Zekry, and Ahmed Attiya, "Gain Enhancement of a Millimeter Wave Antipodal Vivaldi Antenna by Epsilon-Near-Zero Metamaterial," Progress In Electromagnetics Research C, Vol. 85, 105-116, 2018.
doi:10.2528/PIERC18050302
http://jpier.org/PIERC/pier.php?paper=18050302

References


    1. Priyadharisini, S. G. and E. Rufus, "A double negative metamaterial inspired miniaturized rectangular patch antenna with improved gain and bandwidth," Progress In Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 2907-2913, Singapore, Nov. 19-22, 2017.

    2. Ziolkowiski, R. W., "Design, fabrication and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1516-1528, 2003.
    doi:10.1109/TAP.2003.813622

    3. El-Nady, S., H. Zamel, M. Hendy, A. Attiya, and A. Zekry, "Performance enhancement of end-fire bow-tie antenna by using zero index metamaterial," Progress In Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 1895-1900, Singapore, Nov. 19-22, 2017.

    4. Popescu, A.-S., I. Bendoym, T. Rexhepi, and D. Crouse, "Anisotropic zero index material: A method of reducing the footprint of Vivaldi antennas in the UHF range," Progress In Electromagnetics Research C, Vol. 65, 33-43, 2016.
    doi:10.2528/PIERC16031703

    5. Zhou, B. and T. J. Cui, "Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 326-329, 2011.
    doi:10.1109/LAWP.2011.2142170

    6. Shaw, T., A. Roy, and D. Mitra, "Efficiency enhancement of wireless power transfer system using MNZ metamaterials," Progress In Electromagnetics Research C, Vol. 68, 11-19, 2016.
    doi:10.2528/PIERC16081101

    7. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
    doi:10.2528/PIER04070701

    8. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Physical Review B, Vol. 75, No. 15, 2007.
    doi:10.1103/PhysRevB.75.155410

    9. Silveirinha, M. G. and N. Engheta, "Tunneling of electromagnetic energy through sub-wavelength channels and bends using ε-near-zero materials," Physical Review Letters, Vol. 97, No. 15, 2006.
    doi:10.1103/PhysRevLett.97.157403

    10. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902, 2002.
    doi:10.1103/PhysRevLett.89.213902

    11. Wang, B. and K.-M. Huang, "Shaping the radiation pattern with mu and epsilon-near-zero metamaterials ," Progress In Electromagnetics Research, Vol. 106, 107-119, 2010.
    doi:10.2528/PIER10060103

    12. Silveirinha, M. G., A. Alu, B. Edwards, and N. Engheta, "Overview of theory and applications of epsilon-near-zero materials," URSI General Assembly, 44-47, 2008.

    13. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E, Vol. 70, No. 4, 2004.
    doi:10.1103/PhysRevE.70.046608

    14. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero index metamaterial," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.
    doi:10.2528/PIER11072710

    15. Pandey, G., H. Singh, and M. Meshram, "Meander-line-based inhomogeneous anisotropic artificial material for gain enhancement of UWB Vivaldi antenna," Applied Physics A, Vol. 122, No. 2, 134(1-9), 2016.
    doi:10.1007/s00339-015-9569-2

    16. Nor, N. M., M. H. Jamaluddin, M. R. Kamarudin, and M. Khalily, "Rectangular dielectric resonator antenna array for 28 GHz applications," Progress In Electromagnetics Research C, Vol. 63, 53-61, 2016.
    doi:10.2528/PIERC16022902

    17. Parchin, N., M. Shen, and G. Pedersen, "End-Fire phased array 5G antenna design using leaf-shaped bow-tie elements for 28/38 GHz MIMO applications," IEEE International Conference on Ubiquitous Wireless Broadband, 2016.

    18. Haraz, O., M. Ali, S. Alshebeili, and A. Sebak, "Design of a 28/38 GHz dual-band printed slot antenna for the future 5G mobile communication networks," IEEE International Antennas Symposium and Propagtion, 1532-1533, 2015.

    19. Hamzah, N. and K. A. Othman, "Designing Vivaldi antenna with various sizes using CST software," Proceeding of the World Congress on Engineering (WCE 2011), 1-5, London, UK, 2011.

    20. Wang, Y. W., G. M. Wang, and B. F. Zong, "Directivity improvement of Vivaldi antenna using double-slot structure," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1380-1383, 2013.
    doi:10.1109/LAWP.2013.2285182

    21. Molaei, A., M. Kaboli, S. A. Mirtaheri, and S. Abrishamian, "Beam-tilting improvement of balanced antipodal vivaldi antenna using a dielectric lens," Proc. 2nd Iranian Conference on Engineering Electromagnetics, 577-581, Tehran, Iran, 2014.

    22. Fei, P., Y. C. Jiao, W. Hu, and F. S. Zhang, "A miniaturized antipodal Vivaldi antenna with improved radiation characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 127-130, 2011.

    23. Li, L., X. Xia, Y. Liu, and T. Yang, "Wideband balanced antipodal Vivaldi antenna with enhanced radiation parameters," Progress In Electromagnetics Research C, Vol. 66, 163-171, 2016.
    doi:10.2528/PIERC16051704

    24. Wan, F., J. Chen, and B. Li, "A novel ultra-wideband antipodal Vivaldi antenna with trapezoidal dielectric substrate," Microwave and Optical Technology Letters, Vol. 60, No. 2, 449-455, 2018.
    doi:10.1002/mop.30990

    25. Sun, M., Z. N. Chen, and X. Qing, "Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1741-1746, 2013.
    doi:10.1109/TAP.2012.2237154

    26. Bhaskar, M., E. Johari, Z. Akhter, and M. J. Akhtar, "Gain enhancement of the Vivaldi antenna with band notch characteristics using zero-index metamaterial," Microwave and Optical Technology Letters, Vol. 58, No. 1, 233-238, 2016.
    doi:10.1002/mop.29534

    27. Chen, X., T. M. Grzegorczyk., B. I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 2004.

    28. Smith, D., S. Schultz, P. Markos, and C. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 1-5, 2002.

    29. Teni, G., N. Zhang, J. H. Qiu, and P. Y. Zhang, "Research on a novel miniaturized antipodal Vivaldi antenna with improved radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 417-420, 2013.
    doi:10.1109/LAWP.2013.2253592

    30. Nassar, I. T. and T. M. Weller, "A novel method for improving antipodal Vivaldi antenna performance," IEEE Transactions on Antennas and Propagation, Vol. 63, 3321-3324, 2015.
    doi:10.1109/TAP.2015.2429749

    31. Moosazadeh, M. and S. Kharkovsky, "Development of the antipodal Vivaldi antenna for detection of cracks inside concrete members," Microwave and Optical Technology Letters, Vol. 57, No. 7, 1573-1578, 2015.
    doi:10.1002/mop.29158

    32. Moosazadeh, M., S. Kharkovsky, and J. T. Case, "Microwave and millimetre wave antipodal Vivaldi antenna with trapezoid-shaped dielectric lens for imaging of construction materials," IET Microwaves Antennas & Propagation, Vol. 10, No. 3, 301-309, 2016.
    doi:10.1049/iet-map.2015.0374

    33. Wang, N., M. Fang, J. Qiu, and L. Xiao, "Improved design of balanced antipodal Vivaldi for MMW applications," Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE International Symposium, 2615-2616, 2017.

    34. Wan, F., J. Chen, and B. Li, "A novel ultra-wideband antipodal Vivaldi antenna with trapezoidal dielectric substrate," Microwave and Optical Technology Letters, Vol. 60, No. 2, 449-455, 2018.
    doi:10.1002/mop.30990

    35. Kerns, D. M., "New method of gain measurement using two identical antennas," Electronics Letters, Vol. 6, No. 11, 348-349, 1970.
    doi:10.1049/el:19700245