Vol. 54

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-10-16

A T-Section Dual-Band Matching Network for Frequency-Dependent Complex Loads Incorporating Coupled Line with DC-Block Property Suitable for Dual-Band Transistor Amplifiers

By Mohammad A. Maktoomi, Mohammad S. Hashmi, and Fadhel M. Ghannouchi
Progress In Electromagnetics Research C, Vol. 54, 75-84, 2014
doi:10.2528/PIERC14090403

Abstract

This paper reports design of a new dual-band T-type impedance transformer also exhibiting DC-blocking feature. The design aims at achieving matching for frequency-dependent complex loads having distinct values at two arbitrary frequencies to Zs (here, 50 Ω). A step-wise analysis on the developed dual-band impedance transformer provides simple closed-form design equations. The design is verified by extensive simulation in Agilent ADS. For experimental verification a PCB prototype is fabricated using FR-4 material, operating at 1.45 GHz and 2.61 GHz. A good result is obtained confirming the theory and simulation.

Citation


Mohammad A. Maktoomi, Mohammad S. Hashmi, and Fadhel M. Ghannouchi, "A T-Section Dual-Band Matching Network for Frequency-Dependent Complex Loads Incorporating Coupled Line with DC-Block Property Suitable for Dual-Band Transistor Amplifiers," Progress In Electromagnetics Research C, Vol. 54, 75-84, 2014.
doi:10.2528/PIERC14090403
http://jpier.org/PIERC/pier.php?paper=14090403

References


    1. Pozar, D. M., Microwave Engineering, 3rd Edition, John Wiley & Sons, New Delhi, 2010.

    2. Rawat, K., M. S. Hashmi, and F. M. Ghannouchi, "Dual-band RF circuits and components for multi-standard software defined radios," IEEE Circuits Syst. Mag., Vol. 12, No. 1, 12-32, First Quater 2012.
    doi:10.1109/MCAS.2011.2181074

    3. Kenington, P. B., RF and Baseband Techniques for Software Defined Radio, Artech House, Boston, 2005.

    4. Hashemi, H. and A. Hajimiri, "Concurrent multiband low-noise amplifiers --- Theory, design, and applications," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 1, 288-301, Jan. 2002.
    doi:10.1109/22.981282

    5. Nallam, N. and S. Chatterjee, "Multi-band frequency transformations, matching networks and amplifiers," IEEE Trans. Circuits Syst. I: Reg. Papers, Vol. 60, No. 6, 1635-1647, Jun. 2013.
    doi:10.1109/TCSI.2012.2221175

    6. Iyer, B. and N. P. Pathak, "A concurrent dual-band LNA for noninvasive vital sign detection system," Wiley Microw. & Opt. Tech. Lett., Vol. 56, No. 2, 391-394, Feb. 2014.
    doi:10.1002/mop.28127

    7. Rawat, K. and F. M. Ghannouchi, "Design methodology for dual-band doherty power amplifier with performance enhancement using dual-band o?set lines," IEEE Trans. Indust. Electronics, Vol. 59, No. 12, 4831-4842, Dec. 2012.
    doi:10.1109/TIE.2011.2176695

    8. Chow, Y. L. and K. L. Wan, "A transformer of one-third wavelength in two sections-for a frequency and its first harmonic," IEEE Microw. Wireless Comp. Lett., Vol. 12, No. 1, 22-23, Jan. 2002.
    doi:10.1109/7260.975723

    9. Monzon, C., "A small dual-frequency transformer in two sections," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1157-116, Apr. 2003.
    doi:10.1109/TMTT.2003.809675

    10. Sophocles, J. and A. Orfanidis, "Two-section dual-band Chebyshev impedance transformer," IEEE Microw. Wireless Comp. Lett., Vol. 13, No. 9, 382-384, Sep. 2003.
    doi:10.1109/LMWC.2003.817135

    11. Castaldi, G., V. Fiumara, and I. Gallina, "An exact synthesis method for dual-band Chebyshev impedance transformers," Progress In Electromagnetics Research, Vol. 86, 305-319, 2008.
    doi:10.2528/PIER08100605

    12. Colantonio, P., F. Giannini, and L. Scucchia, "A new approach to design matching networks with distributed elements," 15th International Conference on Microwaves, Radar and Wireless Communications, MIKON-2004, Vol. 3, 811-814, 2004.

    13. Wu, Y., Y. Liu, and S. Li, "A dual-frequency transformer for complex impedances with two unequal sections," IEEE Microw. Wireless Comp. Lett., Vol. 19, No. 2, 77-79, Feb. 2009.
    doi:10.1109/LMWC.2008.2011315

    14. Dutta Roy, S. C., "Comment on `a dual-frequency transformer for complex impedances with two unequal sections'," IEEE Microw. Wireless Comp. Lett., Vol. 19, No. 9, 602, Sep. 2009.
    doi:10.1109/LMWC.2009.2027102

    15. Giannini, F. and L. Scucchia, "A complete class of harmonic matching networks: Synthesis and application," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 3, 612-619, Mar. 2009.
    doi:10.1109/TMTT.2009.2013319

    16. Liu, X., Y. Liu, S. Li, F. Wu, and Y. Wu, "A three-section dual-band transformer for frequency-dependent complex load impedance," IEEE Microw. Wireless Comp. Lett., Vol. 19, No. 10, 611-613, Oct. 2009.

    17. Wu, Y., Y. Liu, S. Li, C. Yu, and X. Liu, "A generalized dual-frequency transformer for two arbitrary complex frequency-dependent impedances," IEEE Microw. Wireless Comp. Lett., Vol. 19, No. 12, 792-794, Dec. 2009.
    doi:10.1109/LMWC.2009.2034034

    18. Chuang, M.-L., "Dual-band impedance transformer using two-section shunt stub," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1257-1263, May 2010.
    doi:10.1109/TMTT.2010.2045560

    19. Nikravan, M. A. and Z. Atlasbaf, "T-section dual-band impedance transformer for frequency-dependent complex impedance loads," Electronics Letters, Vol. 47, No. 9, 551-553, Apr. 28, 2011.
    doi:10.1049/el.2010.7452

    20. Rawat, K. and F. M. Ghannouchi, "Dual-band matching technique based on dual-characteristic impedance transformers for dual-band power amplifiers design," IET Microwaves, Antennas & Propagation, Vol. 5, No. 14, 1720-1729, Nov. 18, 2011.
    doi:10.1049/iet-map.2011.0099

    21. Zheng, X., Y. Liu, S. Li, C. Yu, Z. Wang, and J. Li, "A dual-band impedance transformer using Pi-section structure for frequency-dependent complex loads," Progress In Electromagnetics Research C, Vol. 32, 11-26, 2012.

    22. Moon, B.-T. and N.-H. Myung, "A dual-band impedance transforming technique with lumped elements for frequency-dependent complex loads," Progress In Electromagnetics Research, Vol. 136, 123-139, 2013.
    doi:10.2528/PIER12111811

    23. Hsieh, K.-A., H.-S. Wu, K.-H. Tsai, and C.-K. C. Tzuang, "A dual-band 10/24-GHz amplifier design incorporating dual-frequency complex load matching," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 6, 1649-1657, Jun. 2012.
    doi:10.1109/TMTT.2012.2191303

    24. Wu, Y., W. Sun, S.-W. Leung, Y. Diao, and K.-H. Chan, "A novel compact dual-frequency coupled-line transformer with simple analytical design equations for frequency-dependent complex load impedance," Progress In Electromagnetics Research, Vol. 134, 47-62, 2013.
    doi:10.2528/PIER12101906

    25. Li, S., B. Tang, Y. Liu, S. Li, C. Yu, and Y. Wu, "Miniaturized dual-band matching technique based on coupled-line transformer for dual-band power amplifiers design," Progress In Electromagnetics Research, Vol. 131, 195-210, 2012.
    doi:10.2528/PIER12072004

    26. Wu, Y., Y. Liu, S. Li, and C. Yu, "New coupled-line dual-band DC-block transformer for arbitrary complex frequency-dependent load impedance," Wiley Microw. & Opt. Tech. Lett., Vol. 54, No. 1, 139-142, Jan. 2012.
    doi:10.1002/mop.26480

    27. Mongia, R. K., I. J. Bahl, P. Bhartia, and J. Hong, RF and Microwave Coupled Line Circuits, 2nd Edition, Chapter 12, Artech House, Norwood, 2007.

    28. Liu, Y., Y. Zhao, S. Liu, Y. Zhou, and Y. Chen, "Multi-frequency impedance transformers for frequency-dependent complex loads," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 9, 3225-3235, Sep. 2013.
    doi:10.1109/TMTT.2013.2274779