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A T-Section Dual-Band Matching Network for Frequency-Dependent
Complex Loads Incorporating Coupled Line with DC-Block

Property Suitable for Dual-Band Transistor Amplifiers

Mohammad A. Maktoomi1, *, Mohammad S. Hashmi1, 2, and Fadhel M. Ghannouchi2

Abstract—This paper reports design of a new dual-band T-type impedance transformer also exhibiting
DC-blocking feature. The design aims at achieving matching for frequency-dependent complex loads
having distinct values at two arbitrary frequencies to Zs (here, 50Ω). A step-wise analysis on the
developed dual-band impedance transformer provides simple closed-form design equations. The design
is verified by simulation in Agilent ADS. For experimental verification a PCB prototype is fabricated
using FR-4 material, operating at 1.45 GHz and 2.61GHz. A good result is obtained confirming the
theory and simulation.

1. INTRODUCTION

Impedance matching network is one of the ubiquitous blocks of many RF/Microwave circuits/systems
such as amplifiers, mixers, oscillators, antennas and power dividers/combiners. Conventionally, quarter-
wavelength/single-/double-stub impedance transformers have been used for this purpose [1]. However,
such techniques face challenges in the design of dual-band/multi-band circuits and systems [2–5]. For
instance, in the context of a typical dual-band amplifier, shown in Figure 1(a), the key challenge
is to come up with appropriate matching networks so that they are able to work at two distinct
frequencies [4, 6, 7].

Earlier reported distributed designs such as dual-band Chebyshev impedance transformer [10, 11],
dual frequency transformer [9] and two-section 1/3-wavelength transmission line based transformer [8]
are extremely useful for matching real load and source impedances. However, these designs are not able
to provide matching when the load impedances are complex and frequency-dependent as is the case
with a generic dual-band amplifier where the transistor may possess two different complex impedances
(ZL) at two different frequencies as depicted in Figure 1(b). There have been reports of matching
two arbitrary complex load impedances to real source impedance based on two section impedance
transformer [12–14] but again, they are not useful for situations where the complex load impedances
are frequency-dependent. Reported design techniques [15–17] based around three section impedance
transformers address this problem to some extent, but are either too complex to design or are extremely
limited in frequency coverage.

Transmission line section loaded with stepped or open/short stubs [18], T-section network [19],
dual-band line with different characteristic impedances [20] and Pi-section in conjunction with shunt-
stub [21] are also commonly used for dual-band impedance transformation in the design of dual-band
amplifiers. Usually lumped component based matching networks [22] are simpler, but fabrication of
lumped component is difficult at higher frequencies and maintaining their value over a wide frequency
range is extremely difficult [23]. Furthermore, few coupled line based dual-band impedance transformers
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(a) (b)

Figure 1. (a) Typical depiction of a dual-band RF amplifier, (b) frequency-dependent complex input
impedance of a generic transistor (showing its real and imaginary parts).

exhibiting good performance have been reported and in general they may or may not provide inherently
DC blocking [24–26].

In this paper, a simple dual-band impedance transformation technique is presented, which is capable
of matching frequency-dependent complex load impedance at two distinct frequencies with real source
impedance. The design utilizes coupled-line to modify one of the arms of a standard T-shaped network
to achieve dual-band functionality. This modification allows simpler closed form solution for the design
and also provides an additional feature of inherent DC blocking. The details of the proposed matching
network are described in Section 2, while simulation and experimental results are discussed in Section 3
whereas conclusion is presented in Section 4.

2. PROPOSED IMPEDANCE TRANSFORMER

The proposed impedance matching network comprises three sections as shown in Figure 2. Zs is the
source side impedance whereas ZL is the frequency-dependent load impedance. Section A consists of a
transmission line section having characteristic impedance Z1 and electrical length θ1, while section B
consists of a coupled-line having even/odd-mode impedances equal to Ze and Zo and electrical length θ2

whereas section C is an open/short stub with characteristic impedance Z3 and electrical length θ3. All
these electrical lengths are defined at first frequency f1. The physical dimensions l (length), w (width)
and s (separation between coupled lines) of various transmission-lines are also depicted in the figure.
The respective admittances (impedances) looking into sections A, B and C are Yin1(Zin1), Yin2(Zin2)

Figure 2. Proposed dual-band matching network.
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and Yin3(Zin3). In this architecture, overall idea is to first match the real part of Yin1 to the real part
of Yin2, and then cancel out the ‘leftover’ imaginary part of Yin1 + Yin2 by the shunt stub Yin3.

2.1. Design of Section A

It is assumed that the load impedance at two arbitrary frequencies f1 and f2 are as follows:
ZL|f1 = R1 + jX1 and ZL|f2 = R2 + jX2.

As reported in [16], if section A is designed such that:

Z1 =
√

R1R2 + X1X2 +
X1 + X2

R2 −R1
(R1X2 −R2X1) (1a)

θ1 =
pπ + arctan

(
Z1(R1 −R2)
R1X2 −R2X1

)

1 + r
, where: p ∈ I, r = f2/f1 with r ≥ 1 (1b)

then the impedance looking into section A are complex conjugate of each other at the two frequencies,
i.e., Zin1|f1 = Z∗in1|f2 , i.e., Zin1 = 1/Yin1 = Rin1 + jXin1@f1 and Zin1 = 1/Yin1 = Rin1 − jXin1@f2

where, the values of Rin1 and Xin1 are given by [14]:

Rin1 =
R1Z

2
1

[
1 + tan2 θ1

]

Z2
1 − 2Z1X1 tan θ1 +

(
R2

1 + X2
1

)
tan2 θ1

(2a)

Xin1 =

(
Z2

1 −R2
1 −X2

1

)
Z1 tan θ1 + Z2

1X1

[
1− tan2 θ1

]

Z2
1 − 2Z1X1 tan θ1 +

(
R2

1 + X2
1

)
tan2 θ1

(2b)

Alternatively, Yin1 may also be obtained by inverting and rationalizing Zin1:
Yin1 = G1 − jB1@f1 (2c)
Yin1 = G1 + jB1@f2 (2d)

where,
G1 = Rin1/

(
R2

in1 + X2
in1

)
(2e)

B1 = Xin1/
(
R2

in1 + X2
in1

)
(2f)

2.2. Design of Section B

The objective of this section is to match the real part of Yin1 to the real part of Yin2, without any
concerns about matching of their imaginary parts. There are two ways to analyze this section. One is
based on using somewhat ideal yet simple equations for the coupled line while the other one uses the
concept of image impedance to arrive at exact solution. Each of these approaches is described in the
following subsections.

2.2.1. Simplified Analysis of Section B

The input impedance, Zin2 looking into section B is expressed by coupled line model [27]:

Zin2 = 1/Yin2 = −jZs(1− n2) cot θ2 + n2Zs (3a)
where,

n =
ρ− 1
ρ + 1

(3b)

ρ = Ze/Zo (3c)
It can be observed in 3(a) that all the terms are frequency-independent except the cotangent term.
Now, noting that

cot(θ2) = − cot(rθ2) ⇒ cot(θ2) = cot(π − rθ2)
⇒ θ2 = π − rθ2 + qπ, q = 0,±1,±2, . . .
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Thus, it can be deduced that for Zin2|f1 = Z∗in2|f2 , θ2 should satisfy:

θ2 =
(1 + q)π

1 + r
, q ∈ I (4)

Furthermore, 3(a) can be simplified to express Yin2 as:
Yin2 = M + jN (5)

where,

M =
n2

Zs

[
n4 + ((1− n2) cot θ2)

2
] (5a)

N =

(
1− n2

)
cot θ2

Zs

[
n4 + ((1− n2) cot θ2)

2
] (5b)

Setting of M = G1, i.e., Re(Yin2) = Re(Yin1), and then simplification yields the value of parameter n
defined in Equation 3(b):

n =

√
−b±√b2 − 4ac

2a
(6a)

where,
a = 1 + cot2 θ2, (6b)

b = −
(

1
G1Zs

+ 2 cot2 θ2

)
, (6c)

c = cot2 θ2. (6d)
It should be kept in mind that the model of coupled line given by 3(a) is highly idealized one [27]. A
more accurate model requires intensive mathematical analysis as described in the next sub-section.

2.2.2. Exact Analysis of Section B

Using method of the image impedance [1], it can be shown that the ABCD parameters of section B
may be expressed as follows: [

A B
C D

]
=

[
c11 c12

c21 c22

]

where,

c11 =
ρ + 1
ρ− 1

cos θ2 = c22 (7a)

c12 = − j

2

[
4ρZo

ρ− 1
cos2 θ2

sin θ2
− (ρ− 1)Zo sin θ2

]
(7b)

c21 = j
2

(ρ− 1)Zo
sin θ2 (7c)

Now, using two-port network theory Yin2 may be written as:

Yin2 =
c21Zs + c22

c11Zs + c12
(8)

Simplification of (7) and (8) results into a form of Yin2 which is same as in (5), but now with:

M =
4Zs (ρ− 1)2

4
[
Z2

s (ρ + 1)2 − 2ρ (ρ− 1)2 Z2
o

]
cos2 θ2 + (ρ− 1)4 Z2

o sin2 θ2 + 16ρ2Z2
o cos4 θ2/ sin2 θ2

(9a)

N =
ρ + 1
Zo

[
4Z2

s − (ρ− 1)2 Z2
o

]
sin(2θ2) + 8ρZ2

o cos3 θ2/ sin θ2

4
[
Z2

s (ρ + 1)2 − 2ρ (ρ− 1)2 Z2
o

]
cos2 θ2 + (ρ− 1)4 Z2

o sin2 θ2 + 16ρ2Z2
o cos4 θ2/ sin2 θ2

(9b)
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It can be observed that Zin2|f1 = Z∗in2|f2 , if the value of θ2 is given by (4). It follows from following
observations:

i. In 9(a), only even powers of sin θ2 and cos θ2 ensures that the values of M will repeat with a period
of π. In addition, due to their even power M will not change its sign as the frequency switches
from f1 to f2.

ii. Numerator of 9(b) also has a period of π but the sign of N will change as the frequency switches
from f1 to f2.

One can proceed further using either of the two options after invoking Re(Yin2) = Re(Yin1):

a. Assume Zo to be a free variable and solve for ρ.
b. Assume ρ to be a free variable and solve for Zo.

Option (a) leads to a complicated fourth order equation in ρ (and hence in n), while option (b) leads
to a simple quadratic equation in Zo (of the form ax2 − b = 0). Therefore, the following value for Zo is
obtained using option (b):

Zo =

√
4Zs

[(ρ− 1)2 /G1]− Zs (ρ + 1)2 cos2 θ2

(ρ− 1)4 sin2 θ2 + 16ρ2 cos4 θ2/ sin2 θ2 − 8ρ (ρ− 1)2 cos2 θ2

(10)

It is interesting to note that the coupled line used in [26] has to achieve match both for real as well
as for the imaginary parts of Yin1 with that of Yin2. It is not easy to achieve at two different frequencies,
especially with microstrip coupled line having unequal even/odd mode phase velocities. In the proposed
network, only real part of Yin1 needs to be matched to the real part of Yin2 while their leftover imaginary
parts are cancelled by the shunt stub described in Section 2.3. It also helps in extending the range of
load that could be matched.

2.3. Design of Section C

This section cancels the imaginary part of Yin1 + Yin2, given by Expressions 11(a) and 11(b), at two
different frequencies.

j Im(Yin1 + Yin2) = −j (B1 −N) @f1 (11a)
= j (B1 −N) @f2 (11b)

As mentioned earlier, section C could either be an open stub or a short stub. For open stub to work at
two distinct frequencies, following set of equations must be satisfied:

−j Im(Yin1 + Yin2)|f1 = j (1/Z3) tan θ3 (12a)
−j Im(Yin1 + Yin2)|f2 = j (1/Z3) tan(rθ3) (12b)

The terms Z3 and θ3 can be determined by solving (11) and (12):

θ3 =
(1 + s)π

1 + r
, s ∈ I (13a)

Z3 = tan θ3/ (B1 −N) (13b)

A short stub may be shown to work at two frequencies with design equations similar to those given
by (13), except that tangent in 13(b) needs to be replaced by cotangent.

It is important to note that {p, q, s} ∈ I and can be chosen any integer value, but usually they are
set to zero to get smaller footprint on the board. Furthermore, stubs may not be realizable in some
situations and in those cases other techniques to realize complex impedances can be employed [18, 20].

2.4. Design Steps

Design steps can be summarized as follows:

i. The values of Z1 and θ1 are evaluated using (1) from the given values of r, R1, X1, R2, and X2.
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ii. Then Rin1 and Xin1 are determined using 2(a) and 2(b). Subsequently the values of G1 and B1

are calculated from 2(e) and 2(f).
iii. This step is for Yin2 and therefore depends whether one follows simplified or exact analysis of

section B:
(a) Simplified Analysis Flow: Using (4) and (6), θ2 and n are found. It can be observed from 3(b)
that since n is to be less than unity; one of the two values of n obtained from (6) may need to
be discarded. The value of ρ is calculated from the chosen value of n. Either of Ze or Zo can be
assumed to be a free variable and then the other can be found. It is important to keep in mind to
get their realizable values. It may be noted that due to the use of simplified model in this case,
the final design may require tuning/optimization which is a commonly found feature of today’s
RF/Microwave CAD tools.
(b) Exact Analysis Flow: θ2 is found using (4). A suitable value of ρ is assumed and Zo is evaluated
from (10). Once the value of ρ and Zo are known, the value for Ze can be found using 3(c). Since
this is an exact method so ideally there is no need for tuning/optimization.

iv. To design section C, (13) is used to get θ3 and Z3. Once again 5(b) or 9(b) may be used for finding
out the value of N depending upon whether simplified or exact analysis was adopted for section B.

3. SIMULATION AND EXPERIMENTAL VERIFICATION

To verify that the values of Yin2 are complex conjugate of each other at the two frequencies, a coupled
line having ρ = 3 and Zo = 25Ω is considered. It is also assumed that f1 = 1 GHz and Zs = 50 Ω.
Simulations are performed for three values of f2: 2 GHz, 3 GHz and 4GHz which corresponds to r = 2, 3
and 4, respectively. It is evident from the resulting plots of Yin2 from a simulation performed in Agilent
ADS that as shown in Figure 3 the real part remains the same and the imaginary part just changes its
sign as the frequency switches from f1 to f2.

Next, Table 1 provides a comparison between the proposed design and the one reported in [26]. It
can be noted that θc in [26] and θ2 in this paper has the same meaning. In this table, calculations are
shown for the exact analysis described in section B. It can be seen that the value of Zo for the chosen
specifications is negative for the design reported in [26] while the proposed design gives realizable values
for various parameters.
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Figure 3. Variation of (a) real and (b) imaginary parts of Yin2 with frequency.

Table 1. Comparison with [26].

Ref.
Frequencies

(GHz)
ZL(Ω) Section A Section B Section C

[26]

f1 = 1.45

f2 = 2.61

25− j20

24.5 + j12.5

Z1 = 111.36 Ω

θ1 = 1.42◦

Zo = −32.27Ω

Ze = 31.04Ω

θc = 64.29◦
NA

This

Work

ρ = 4, θ2 = 64.29◦

Zo = 29.16Ω

Ze = 116.64Ω

Open stub

Z3 = 41.73Ω

θ3 = 128.57◦
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To further study the proposed matching network, an arbitrarily chosen frequency-dependent load
is considered as depicted in Figure 4(a). The first frequency f1 is fixed at 1 GHz and f2 is swept as
mentioned in Table 2. The load impedance along with the design parameters are also mentioned in
Table 2 for five different cases. The simulated results for the designs listed in Table 2 are shown in
Figure 4(b).

Further, a few more considered cases are given in Table 3. Here, the two frequencies are kept fixed
and load impedances are made distinct. The simulated results for these designs in Table 3 are shown

Table 2. Design parameters for some cases where f1 is fixed and f2 is varying.

Case
Frequencies

(GHz)
ZL (Ω) Section A Section B Section C

0
f1 = 1

f2 = 1.7

70 + j10

73.5 + j14.48

Z1 = 85.08Ω

θ1 = 49.29◦

ρ = 4, θ2 = 66.67◦

Zo = 68.63Ω

Ze = 274.52Ω

short stub

Z3 = 136.25 Ω

θ3 = 133.34◦

1
f1 = 1

f2 = 2

70 + j10

75 + j17

Z1 = 88.29Ω

θ1 = 44.96◦

ρ = 2.2, θ2 = 60◦

Zo = 51 Ω

Ze = 112.2Ω

open stub

Z3 = 75.20Ω

θ3 = 120◦

2
f1 = 1

f2 = 2.5

70 + j10

77.5 + j23

Z1 = 95.55Ω

θ1 = 39.72◦

ρ = 2.75, θ2 = 51.43◦

Zo = 35.71Ω

Ze = 98.20Ω

short stub

Z3 = 39.85Ω

θ3 = 51.43◦

3
f1 = 1

f2 = 3

70 + j10

80 + j28

Z1 = 101.43Ω

θ1 = 34.71◦

ρ = 3.5, θ2 = 45◦

Zo = 34.44Ω

Ze = 120.54Ω

short stub

Z3 = 68.12Ω

θ3 = 45◦

4
f1 = 1

f2 = 3.5

70 + j10

82.5 + j35

Z1 = 109.42Ω

θ1 = 31.09◦

ρ = 3.8, θ2 = 40◦

Zo = 22.67Ω

Ze = 86.15Ω

short stub

Z3 = 107.60 Ω

θ3 = 120◦
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Figure 4. (a) Variation of real and imaginary parts of the frequency-dependent complex load (ZL),
(b) S11 in dB for different cases listed in Table 2.
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Figure 5. S11 in dB for different cases listed in Table 3.
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Table 3. Design parameters for some cases where f1 and f2 are fixed and the load is varying.

Cases
Frequencies

(GHz)
ZL (Ω) Section A Section B Section C

0
30− j27

47 + j60

Z1 = 75.81 Ω

θ1 = 52.41◦

ρ = 2.5, θ2 = 60◦

Zo = 57.52Ω

Ze = 143.8Ω

short stub

Z3 = 88.67Ω

θ3 = 60◦

1
f1 = 1

f2 = 2

80 + j15

90 + j24

Z1 = 98.91 Ω

θ1 = 39.98◦

ρ = 2.1, θ2 = 60◦

Zo = 48.06Ω

Ze = 100.93Ω

open stub

Z3 = 69.46Ω

θ3 = 120◦

2
50 + j60

20− j30

Z1 = 43.59 Ω

θ1 = 51.39◦

ρ = 2.1, θ2 = 60◦

Zo = 53.53Ω

Ze = 112.4Ω

open stub

Z3 = 49.94Ω

θ3 = 120◦

Z L  

freq, GHz

S
   

, d
B

11

(a) (b)

Figure 6. (a) Photo of prototype manufactured in our lab and (b) plot of S11 in dB against frequency.

in Figure 5. All the above examples demonstrate the validity and usefulness of the proposed matching
network.

Finally, the proposed matching network implemented on an FR-4 substrate (εr = 4.7, thickness =
1.5mm) with 1 oz copper is shown in Figure 6(a). It is important to note that the designed prototype
is based on simplified equations for section B and therefore extensive simulation and optimization in
Agilent ADS were carried out. The physical dimensions of the implemented matching network are as
follows (dimensions in mm): l1 = 13.91, l2 = 21.66, l3 = 21, w1 = 2.25, w2 = 0.64, w3 = 0.76 and
s2 = 0.36.

To verify the operation of the designed impedance transformer, a frequency-dependent load
described in [26] is created. The load uses two open stubs and a Vishay-Dale CRCW series 10 Ω
SMD resistor. The values of realized loads at the two frequencies f1 = 1.45GHz and f2 = 2.61GHz are
as follows:

ZL (Ω) =
{

8.049− j26.868 @f1

114.621 + j190.247 @f2

The simulated and measured results of the proposed matching network are shown in Figure 6(b).
The plot of S11 in dB shows dips around the two design frequencies with the measured return loss of
approximately 20.5 dB @ f1 and 16 dB @ f2. A slightly higher deviation is observed around f2 perhaps
due to the more pronounced impact of difference in even/odd-mode velocities. Nevertheless, it is evident
from the plot that a well match can be obtained using the proposed circuit.

A comparison with some existing state of the art is shown in Table 4. It may be noted that since
there is no standard definition for a frequency-dependent complex load; different reported designs have
used different frequency dependency of load, thus it won’t be fair to make comparison based on the
bandwidth [28]. Moreover, the design reported in [25] also provides DC-blocking, but works for a very
limited range of r.
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Table 4. Comparison with some state of the art.

Ref. No. Type of Load Experiment
DC

Blocking

Design

Equations
Lumped/Distributed

9 Real No No Simple Distributed

10 Real No No Simple Distributed

13

Complex

(but same

@ f1 & f2)

No No Complex2 Distributed

16 FDCL1 No No Simple Distributed

17 FDCL Yes No Simple Distributed

18 FDCL Yes No Complex Distributed

19 FDCL No No Simple Distributed

20 FDCL Yes No Complex Distributed

21 FDCL Yes No Simple Distributed

22 FDCL No No Simple Lumped

24 FDCL Yes No Simple Distributed

This Work FDCL Yes Yes Simple Distributed

1FDCL: frequency-dependent complex load.
2Complex: requires computer to solve the design equations.

4. CONCLUSION

A new dual-band matching network utilizing modified T-section transmission line segment has been
proposed in this paper. The new design can provide matching at two arbitrary frequencies for frequency-
dependent complex loads. The design is unique in a way that only real part of Yin1 is required to match to
the real part of Yin2 while their leftover imaginary parts are cancelled by a shunt stub. This enables the
extending of the range of load that could be matched. The reported design also exhibits an interesting
and useful characteristic of inherent DC blocking. The simulation and experimental results match well,
thereby validate the design proposed in this paper.
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