Vol. 98
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-12-31
ANN and FA Based Design of Hybrid Fractal Antenna for ISM Band Applications
By
Progress In Electromagnetics Research C, Vol. 98, 127-140, 2020
Abstract
In this paper, a compact Giuseppe Peano, Cantor Set and Sierpinski Carpet fractals based hybrid fractal Antenna (GCSA) is designed and developed for Industrial, Scientific and Medical (ISM) band applications. The proposed GCSA is a hybrid fractal design which is created by fusing Giuseppe Peano, Cantor set and Sierpinski carpet fractals together. The optimization of the microstrip line feed position is performed by using a Firefly Algorithm (FA). The substrate material employed for proposed GCSA is a low-priced, easily available FR4 epoxy of thickness 1.6 mm. By varying the geometrical dimensions of the radiating patch, a data set of 58 GCSAs is randomly generated for the realization of Artificial Neural Network (ANN) and FA approaches. The designed structure is fabricated and then measured results are evaluated. The proposed GCSA is capable of resonating at 2.4450 GHz with S(1,1) < -10 dB. The measured bandwidth of the operating ISM band is 101 MHz. The quantitative performance of three different ANN types reveals that Feed Forward Back Propagation ANN (FFBPN) shows minimum error in comparison to other two ANN types. The simulated, experimental and optimized results show a good match that specifies the preciseness of the measurement.
Citation
Manpreet Kaur, and Jagtar Singh Sivia, "ANN and FA Based Design of Hybrid Fractal Antenna for ISM Band Applications," Progress In Electromagnetics Research C, Vol. 98, 127-140, 2020.
doi:10.2528/PIERC19110901
References

1. Lin, W. and H. Wang, "Polarization reconfigurable circular patch antenna with multiple l-probes for biomedical applications," IEEE International Symposium on Antennas and Propagation (APSURSI), Jul. 2016, ISSN: 1947-1491.

2. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-centric Communications, ArtechHouse, London and Boston, 2006.
doi:10.1109/EUCAP.2006.4584864

3. Kaur, G., A. Kaur, G. K. Toor, B. S. Dhaliwal, and S. S. Pattnaik, "Antennas for biomedical applications," Biomedical Engineering Letters, Vol. 5, No. 3, 203-212, Sept. 2015.
doi:10.1007/s13534-015-0193-z

4. Sabban, A., "New wideband printed antennas for medical applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 84-91, Jan. 2013.
doi:10.1109/TAP.2012.2214993

5. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.

6. Ali, J. K., M. T. Yassen, M. R. Hussan, and A. J. Salim, "A printed fractal based slot antenna for multiband wireless communication applications," Proceedings of PIERS, 618-622, Moscow, Russia, Aug. 19-23, 2012.

7. Oraizi, H. and S. Hedayati, "Circularly polarized multiband microstrip antenna using square and giuseppe peano fractals," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3466-3470, Jul. 2012.
doi:10.1109/TAP.2012.2196912

8. Sundaram, A., M. Maddela, and R. Ramadoss, "Koch-Fractal folded-slot antenna characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 219-222, Apr. 2007.
doi:10.1109/LAWP.2007.895293

9. Oraizi, H. and S. Hedayati, "Combined fractal geometries for the design of wide band microstrip antennas with circular polarization," PIERS Proceedings, 1262-1267, Suzhou, China, Sept. 12-16, 2011.

10. Sharma, N., V. Sharma, and S. S. Bhatia, "A novel hybrid fractal antenna for wireless applications," Progress In Electromagnetics Research M, Vol. 73, 25-35, 2018.

11. Dhaliwal, B. S. and S. S. Pattnaik, "BFO-ANN ensemble hybrid algorithm to design compact fractal antenna for rectenna system," International Journal on Neural Computing and Applications, Vol. 28, No. 1, 917-928, Dec. 2017.
doi:10.1007/s00521-016-2402-9

12. Singh, S. and B. S. Dhaliwal, "Analysis of hybrid fractal antenna using artificial neural network," International Conference on Soft Computing in Wireless Communication (SCAWC 2017), 219-222, Mar. 9-11, 2017.

13. Kaur, K. and J. S. Sivia, "“A compact hybrid multiband antenna for wireless applications," International Journal on Wireless Personal Communications, Vol. 97, No. 4, 5917-5927, Dec. 2017.
doi:10.1007/s11277-017-4818-7

14. Sharma, N. and S. S. Bhatia, "Split ring resonator based multiband hybrid fractal antennas for wireless applications," International Journal of Electronics and Communications, Vol. 93, 39-52, Sept. 2018.
doi:10.1016/j.aeue.2018.05.035

15. Bangi, I. K. and J. S. Sivia, "Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications," International Journal of Electronics and Communications, Vol. 85, 159-168, Feb. 2018.
doi:10.1016/j.aeue.2018.01.005

16. Brar, A. S., J. S. Sivia, and G. Bharti, "A compact hybrid Minkowski fractal antenna for C and X-band applications," International Journal of Computer Science and Information Security (IJCSIS), Vol. 14, No. 12, 349-352, Dec. 2016.

17. Saputro, S. A. and J. Y. Chung, "Hilbert curve fractal antenna for dual on- and off-body communication," Progress In Electromagnetics Research Letters, Vol. 58, 81-88, 2016.
doi:10.2528/PIERL15111107

18. Choukiker, Y. K. and S. K. Behera, "Modified Sierpinski square fractal antenna covering ultra-wide band application with band notch characteristics," IET Microwaves, Antennas & Propagation, Vol. 8, No. 7, 506-512, May 2014.
doi:10.1049/iet-map.2013.0235

19. Li, Y., X. Yang, C. Liu, and T. Jiang, "Miniaturization cantor set fractal ultrawideband antenna with a notch band characteristic," Microwave and Optical Technology Letters, Vol. 54, No. 5, 1227-1230, Mar. 2017.
doi:10.1002/mop.26762

20. Sivia, J. S., A. P. S. Pharwaha, and T. S. Kamal, "Analysis and design of circular fractal antenna using artificial neural networks," Progress In Electromagnetics Research B, Vol. 56, 251-267, 2013.
doi:10.2528/PIERB13091611

21. Salim, M. and A. Pourziad, "A novel reconfigurable spiral-shaped monopole antenna for biomedical applications," Progress In Electromagnetics Research Letters, Vol. 57, 79-84, 2015.
doi:10.2528/PIERL15083103

22. Oraizi, H. and S. Hedayati, "Miniaturized UWB monopole microstrip antenna design by the combination of Giuseppe Peano and Sierpinski Carpet fractals," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 67-70, Jan. 201.

23. Choukiker, Y. K. and S. K. Behera, "Design of wideband fractal antenna with combination of fractal geometries," International Conference on Information, Communications and Signal Processing, Singapore, Dec. 13-16, 2011.

24. Oraizi, H. and S. Hedayati, "Circularly polarized multiband microstrip antenna using square and Giuseppe Peano fractals," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3466-3470, Jul. 201.
doi:10.1109/TAP.2012.2196912

25. Sukhija, S. and R. K. Sarin, "A U-shaped meandered slot antenna for biomedical applications," Progress In Electromagnetics Research M, Vol. 62, 65-77, 2017.
doi:10.2528/PIERM17082101

26. Kaur, M. and J. S. Sivia, "ANN-based design of hybrid fractal antenna for biomedical applications," International Journal of Electronics, Vol. 106, No. 8, 1184-1199, Mar. 2019.
doi:10.1080/00207217.2019.1582712

27. Sivia, J. S., A. P. S. Pharwaha, and T. S. Kamal, "Neurocomputational models for parameter estimation of circular microstrip patch antennas," Procedia Computer Science, Vol. 85, 393-400, Dec. 2016.
doi:10.1016/j.procs.2016.05.178

28. Feiz, N., F. Mohajeri, and D. Zarifi, "Design, simulation and fabrication of an optimized microstrip antenna with metamaterial superstrate using particle swarm optimization ," Progress In Electromagnetics Research M, Vol. 36, 101-108, May 2014.
doi:10.2528/PIERM14010202

29. Zaman, M. A. and M. A. Matin, "Nonuniformly spaced linear antenna array design using firefly algorithm," International Journal of Microwave Science and Technology, Vol. 2012, 1-8, Jan. 2012.
doi:10.1155/2012/256759

30. Mohammed, H. J., A. S. Abdullah, R. S. Ali, R. A. Abd-Alhameed, Y. I. Abdulraheem, and J. M. Noras, "Design of a unipolar printed triple band-rejected ultra-wideband antenna using particle swarm optimization and the firefly algorithm," IET Microwaves, Antennas & Propagation, Vol. 10, No. 1, 31-37, 2014.
doi:10.1049/iet-map.2014.0736

31. Dhaliwal, B. S. and S. S. Pattnaik, "Performance comparison of bio-inspired optimization algorithms for Sierpinski gasket fractal antenna design," Neural Computing and Applications, Vol. 27, No. 3, 585-592, Apr. 2016.
doi:10.1007/s00521-015-1879-y

32. Kaur, R. and M. Rattan, "Optimization of the return loss of differentially fed microstrip patch antenna using ANN and firefly algorithm," Wireless Personal Communications, Vol. 80, No. 4, 1547-1556, Feb. 2015.
doi:10.1007/s11277-014-2099-y

33. Bhushan, B. and S. S. Pillai, "Particle swarm optimization and firefly algorithm: Performance analysis," IEEE International Advances Computing Conference (IACC), 746-751, Feb. 22-23, 2013.

34. Kaur, M. and J. S. Sivia, "Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO," International Journal of Electronics and Communications, Vol. 99, 14-24, Feb. 2019.
doi:10.1016/j.aeue.2018.11.005

35. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, London.

36. Dhaliwal, B. S. and S. S. Pattnaik, "Artificial neural network analysis of Sierpinski Gasket fractal antenna: A low-cost alternative to experimentation," Advances in Artificial Neural Systems, Vol. 2013, Article ID 560969, 7 pages, Jan. 2013.

37. Gil, I. and R. Fernandez-Garcia, "Wearable PIFA antenna implemented on jean substrate for wireless body area network," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 11-12, 1194-1204, 2017.
doi:10.1080/09205071.2017.1341854

38. Sivanandam, S. N. and S. N. Deepa, Principles of Soft Computing, Wiley-India (P) Ltd., New Delhi, 2008.