Vol. 83
Latest Volume
All Volumes
PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-09
Design of a Novel Compact and Efficient Rectenna for WiFi Energy Harvesting
By
Progress In Electromagnetics Research C, Vol. 83, 57-70, 2018
Abstract
With the increase of low power devices, the design of a compact and efficient rectenna is essential for supplying energy to the devices. This paper presents a compact rectenna for high efficient WiFi energy harvesting. A novel fractal geometry is introduced in the design of antenna for miniaturization, and the ability to harvest WiFi energy is enhanced due to its characteristics of self-similarity and space filling. Besides, a single stub matching network is designed to achieve high conversion efficiency with a relatively low input power ranging from -20 dBm to 0 dBm. Simulation and experiments have been carried out. The results show that the proposed antenna features a good characteristic of reflection coefficient and realized gain at WiFi band. The highest RF to DC conversion efficiency of the rectenna is up to 52% at 2.48 GHz with the input power of 0 dBm. This study demonstrates that the proposed rectenna can be applied to a range of low power electronic applications.
Citation
Yanyan Shi, Jianwei Jing, Yue Fan, Lan Yang, and Meng Wang, "Design of a Novel Compact and Efficient Rectenna for WiFi Energy Harvesting," Progress In Electromagnetics Research C, Vol. 83, 57-70, 2018.
doi:10.2528/PIERC18012803
References

1. Leclerc, C., M. Egels, and E. Bergeret, "Design and measurement of multi-frequency antennas for RF energy harvesting tags," Progress In Electromagnetics Research, Vol. 156, 47-53, 2016.
doi:10.2528/PIER15121803

2. Shaikh, F. K. and S. Zeadally, "Energy harvesting in wireless sensor networks: A comprehensive review," Renew. Sustain. Energy Rev., Vol. 55, 1041-1054, 2016.
doi:10.1016/j.rser.2015.11.010

3. Song, C. Y., Y. Huang, J. Zhou J. Zhang, and S. Yuan, "A high-efficiency broadband rectenna for ambient wireless energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 63, 3486-3495, 2015.
doi:10.1109/TAP.2015.2431719

4. Mei, H., X. Yang, B. Han, and G. Tan, "High-efficiency microstrip rectenna for microwave power transmission at Ka band with low cost," Iet Microwaves Antennas & Propagation, Vol. 10, 1648-1655, 2016.
doi:10.1049/iet-map.2016.0025

5. Masotti, D., A. Costanzo, M. D. Prete, and V. Rizzoli, "Genetic based design of a tetra-band high-efficiency radio-frequency energy harvesting system," IET Microwave. Antennas Propagat., Vol. 7, 1254-1263, 2013.
doi:10.1049/iet-map.2013.0056

6. Shin, J., M. Seo, and J. Choi, "A compact and wideband circularly polarized rectenna with high efficiency at X-band," Progress In Electromagnetics Research, Vol. 145, 163-173, 2014.
doi:10.2528/PIER14012803

7. Sun, H. and G. Wen, "A new rectenna using beamwidth-enhanced antenna array for RF power harvesting applications," IEEE Antennas & Wireless Propagation Letters, 2016.

8. Lu, P., X. S. Yang, and J. L. Li, "Polarization reconfigurable broadband rectenna with tunable matching network for microwave power transmission," IEEE Trans. Antennas Propag., Vol. 64, 1136-1141, 2016.
doi:10.1109/TAP.2016.2518198

9. Gretskih, D. V., A. V. Gomozov, V. A. Katrich, et al. "Mathematical model of large rectenna arrays for wireless energy transfer," Progress In Electromagnetics Research, Vol. 74, 77-91, 2017.
doi:10.2528/PIERB17010503

10. Kuzu, S. and N. Akcam, "Array antenna using defected ground structure shaped with fractal form generated by apollonius circle," IEEE Antennas & Wireless Propagation Letters, Vol. 16, 1020-1023, 2016.
doi:10.1109/LAWP.2016.2616944

11. Alqadami, A. S. M., M. F. Jamlos, and I. Islam, "Multi-band antenna array based on double negative metamaterial for multi automotive applications," Progress In Electromagnetics Research, Vol. 159, 27-37, 2017.
doi:10.2528/PIER16091203

12. Sun, H., Y. Guo, M. He, and Z. Zhong, "A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting," IEEE Antennas Wirel. Propag. Lett., Vol. 22, 918-921, 2013.
doi:10.1109/LAWP.2013.2272873

13. Choi, D. Y., S. Shrestha, and S. K. Noh, "Design and performance of an efficient rectenna incorporating a fractal structure," International Journal of Communication Systems, Vol. 27, 661-679, 2014.
doi:10.1002/dac.2587

14. Dhaliwal, B. S. and S. S. Pattnaik, "BFOANN ensemble hybrid algorithm to design compact fractal antenna for rectenna system," Neural Computing & Applications, Vol. 28, 1-12, 2016.
doi:10.1162/NECO_a_00798

15. Mahfoudi, H., M. Tellache, and H. Takhedmit, "A wideband fractal rectenna for energy harvesting applications," 2016 10th European Conference on Antennas and Propagation, 1-4, 2016.

16. Zeng, M., A. Andrenko, and X. Liu, "A compact fractal loop rectenna for RF energy harvesting," IEEE Antennas and Wireless Propagation, Vol. 16, 2424-2427, 2017.
doi:10.1109/LAWP.2017.2722460

17. Palazzi, V., C. Kalialakis, and F. Alimenti, "Performance analysis of a ultra-compact low-power rectenna in paper substrate for RF energy harvesting," Wireless Sensors & Sensor Networks, 65-68, 2017.

18. Arrawatia, M., M. S. Baghini, and G. Kumar, "Broadband bent triangular omnidirectional antenna for RF energy harvesting," IEEE Antennas & Wireless Propagation Letters, Vol. 15, 36-39, 2016.

19. Shi, Y. and J. Liu, "Wideband and low-profile omnidirectional circularly-polarized antenna with Slits and shorting-vias," IEEE Antennas & Wireless Propagation Letters, Vol. 15, 686-689, 2016.
doi:10.1109/LAWP.2015.2469277

20. Mahmud, M. Z., M. T. Islam, and M. Samsuzzaman, "Design and parametric investigation of directional antenna for microwave imaging application," Iet Microwaves Antennas & Propagation, Vol. 11, 770-778, 2017.
doi:10.1049/iet-map.2016.0774

21. Song, C. Y., Y. Huang, and P. Carter, "A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting," IEEE Transactions on Antennas & Propagation, Vol. 64, 3160-3171, 2016.
doi:10.1109/TAP.2016.2565697

22. Song, C. Y., Y. Huang, and J. F. Zhou, "Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting," IEEE Transactions on Industrial Electronics, Vol. 64, 3950-3961, 2017.
doi:10.1109/TIE.2016.2645505

23. Kumar, A., S. Sinha, and A. Sepahvand, "Improved design optimization for high-efficiency matching networks," IEEE Transactions on Power Electronics, Vol. 33, 37-50, 2017.
doi:10.1109/TPEL.2017.2670640

24. Chandravanshi, S. and M. J. Akhtar, "Design of efficient rectifier using IDC and harmonic rejection filter in GSM/COMA band for RF energy harvesting," Microwave & Optical Technology Letters, Vol. 59, 681-686, 2017.
doi:10.1002/mop.30365

25. Xu, X. G., X. X. Zhang, X. Li, and Z. Cheng, "Design of built-in snowflake microstrip antenna built in high-voltage switchgear," High Voltage Engineering, Vol. 42, 3207-3213, 2016.