Vol. 76
Latest Volume
All Volumes
PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-07-31
A Miniaturized Bandpass Frequency Selective Surface with High Selectivity Base on Slot Coupling
By
Progress In Electromagnetics Research C, Vol. 76, 99-108, 2017
Abstract
A Ku-band bandpass frequency selective surface (FSS) with high selectivity and miniaturization is proposed in this paper. We use two metallic strips and one slot to design the frequency selective surface structure which contains both electrical and magnetic couplings. A metallic via is introduced in the FSS element for miniaturization. With the via inserted at the end of the metallic strip, the FSS unit size is reduced to half compared to that without via inserted. To investigate the operating principle of the slot-coupled FSS, an equivalent-circuit model is given and analysed using the odd- and even-mode method. The constructed out-of-phase signal path causes two transmission zeros (TZs) near the skirts of the narrow pass band, thereby enhancing the selectivity. A prototype of the proposed FSS operating at 16GHz is fabricated and measured. The measured results agree well with the full-wave and circuit simulation results, thus verifying the FSS design.
Citation
Shiling Yang, Qiang Chen, Jiajun Bai, and Yunqi Fu, "A Miniaturized Bandpass Frequency Selective Surface with High Selectivity Base on Slot Coupling," Progress In Electromagnetics Research C, Vol. 76, 99-108, 2017.
doi:10.2528/PIERC17051504
References

1. Behdad, N., "A second-order band-pass frequency selective surface using non-resonant subwavelength periodic structures," Microw. Opt. Technol. Lett., Vol. 50, No. 6, 1639-1643, Jun. 2008.
doi:10.1002/mop.23445

2. Al-Joumayly, M. and N. Behdad, "Wideband planar microwave lenses using sub-wavelength spatial phase shifters," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4542-4552, Dec. 2011.
doi:10.1109/TAP.2011.2165515

3. Encinar, J. A., "Design of two-layer printed reflectarrays using patches of variable size," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 10, 1403-1410, Oct. 2001.
doi:10.1109/8.954929

4. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

5. Al-Joumayly, M. A. and N. Behdad, "A generalized method for synthesizing low-profile, bandpass frequency selective surfaces with non-resonant constituting elements," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 4033-4041, 2010.
doi:10.1109/TAP.2010.2078474

6. Ohira, M., H. Deguchi, M. Tsuji, and H. Shigesawa, "Novel waveguide filters with multiple attenuation poles using dual-behavior resonance of frequency-selective surfaces," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 11, 3320-3326, Nov. 2005.
doi:10.1109/TMTT.2005.857334

7. Tamijani, A. A., K. Sarabandi, and G. M. Rebeiz, "Antenna-filter-antenna arrays as a class of bandpass frequency-selective surfaces," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 8, 1781-1789, Aug. 2004.
doi:10.1109/TMTT.2004.831572

8. Li, B. and Z. Shen, "Three-dimensional bandpass frequency selective structures with multiple transmission zeros," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 10, 3578-3589, Oct. 2013.
doi:10.1109/TMTT.2013.2279776

9. Tardy, I., C. H. Chan, and J. S. Yee, "Analysis of Yee frequency selective surface," IEEE Antenna Propag. Soc. Symp. Dig., Vol. 1, 196-199, London, ON, Canada, 1991.

10. Chan, C. H., "Novel terahertz dual-polarized frequency selective surface with high frequency selectivity," IEEE 2014 International Symposium on Antennas and Propagation (ISAP), 2014.

11. Yang, G., T. Zhang, W. Li, and Q. Wu, "A novel stable miniaturized frequency selective surface," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1018-1021, Nov. 2010.

12. Liu, H. L., K. L. Ford, and R. J. Langley, "Design methodology for a miniaturized frequency selective surface using lumped reactive components," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2732-2738, Sep. 2009.
doi:10.1109/TAP.2009.2027174

13. Yu, Y.-M., C.-N. Chiu, Y.-P. Chiou, and T.-L. Wu, "A novel 2.5-dimensional ultraminiaturizedelement frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3657-3663, Jul. 2014.
doi:10.1109/TAP.2014.2321153

14. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, NY, USA, 2001.
doi:10.1002/0471221619

15. Lee, C. K. and R. J. Langley, "Equivalent-circuit models for frequency-selective surfaces at oblique angles of incidence," Proc. Inst. Elect. Eng. — Microw. Antennas Propag. H, Vol. 132, Part 6, 395-399, Oct. 1985.

16. Ma, K. X., J. G. Ma, K. S. Yeo, and M. A. Do, "A compact coupling controllable filter with separate electric and magnetic coupling paths," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 3, 1113-1119, Mar. 2006.
doi:10.1109/TMTT.2005.864118

17. Tyurnev, V. V., "Coupling coefficients of resonators in microwave filter theory," Progress In Electromagnetics Research B, Vol. 21, 47-67, 2010.