Vol. 57
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-04-10
A Novel Tri-Band Hexagonal Microstrip Patch Antenna Using Modified Sierpinski Fractal for Vehicular Communication
By
Progress In Electromagnetics Research C, Vol. 57, 25-34, 2015
Abstract
The present paper analyses and documents the merits of incorporating fractal design in microstrip antenna intended to be mounted on and integrated into the design of smart vehicles. A novel design is proposed for a compact tri-band hexagonal microstrip antenna to be integrated with the body of a smart vehicle for short range communication purpose in an Intelligent Transport System (ITS). This antenna can be used at 1.575 GHz of GPS L1 band for vehicle to roadside communication, at 3.71 GHz of mobile WiMAX band (IEEE 802.16e-2005) for blind spot detection and at 5.9 GHz of DSRC band (IEEE 802.11p) for vehicle to vehicle communication. At 3.71 GHz, the two major lobes of the antenna radiation beam, tilted by 35° on both sides from its broadside direction, help the vehicle to detect blind spots efficiently. The largest dimension of the proposed antenna corresponds to the lowest resonating frequency, 1.575 GHz. Compared to the conventional hexagonal patch, the modified Sierpinski fractal proposed herein reduces the overall area, at 1.575 GHz, by 75%, with 5.2 dBi gain. In comparison with other popular fractals, the proposed fractal structure achieves demonstrably better antenna miniaturization. When the antenna is mounted on the vehicle, considered an electromagnetically larger object, the simulated and on-vehicle experimental results show antenna gains of more than 5.5 dBi at 1.575 GHz, 8 dBi at 3.71 GHz and 9 dBi at 5.9 GHz in the desired direction with negligible amount of electromagnetic interference inside the car.
Citation
Tapas Mondal, Susamay Samanta, Rowdra Ghatak, and Sekhar Ranjan Bhadra Chaudhuri, "A Novel Tri-Band Hexagonal Microstrip Patch Antenna Using Modified Sierpinski Fractal for Vehicular Communication," Progress In Electromagnetics Research C, Vol. 57, 25-34, 2015.
doi:10.2528/PIERC15021105
References

1. Etou, Y., T. Sugiyama, K. Abe, and T. Abe, "Corner detection using slit rotational edge-feature detector," 2002 IEEE Int. Conf. on Image Processing, Vol. 2, 797-800, 2002.

2. Alonso, J. D., E. Ros Vidal, A. Rotter, and M. Muhlenberg, "Lane-change decision aid system based on motion-driven vehicle tracking," IEEE Trans. on Vehicular Technology, Vol. 57, No. 5, 2736-2746, Sep. 2008.
doi:10.1109/TVT.2008.917220

3. Misnan, M. F., N. H. M. Arshad, R. L. A. Shauri, N. Abd Razak, N. M. Thamrin, and S. F. Mahmud, "Real-time vision based sensor implementation on unmanned aerial vehicle for features detection technique of low altitude mapping," 2013 IEEE Conf. on Systems Process & Control (ICSPC), 289-294, Dec. 13–15, 2013.

4. Kuwana, J. and M. Itoh, "Dynamic angling side-view mirror for supporting recognition of a vehicle in the blind spot," IEEE Int. Conf. on Control, Automation and Systems, Vol. 2008, 2913-2918, Oct. 14–17, 2008.

4. Leelaratne, R. and R. Langley, "Multiband PIFA vehicle telematics antennas," IEEE Trans. on Vehicular Technology, Vol. 54, 477-485, 2005.
doi:10.1109/TVT.2004.841535

6. Best, S. R., "A comparison of the performance properties of the Hilbert curve fractal and meander line monopole antenna," Microw. Opt. Technol. Lett., Vol. 35, No. 4, 258-262, 2002.
doi:10.1002/mop.10576

7. Gonzalez-Arbes, J. M. and J. Romeu, "Experiences on monopoles with the same fractal dimension and different topology," IEEE Ant. and Prop. Soc. Int. Symp., Vol. 4, 218-222, Jun. 2003.

8. Comisso, M., "On the use of dimension and lacunarity for comparing the resonant behavior of convoluted wire antennas," Progress In Electromagnetics Research, Vol. 96, 361-376, 2009.
doi:10.2528/PIER09082505

9. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman and Company, New York, 1983.

10. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, Feb. 2002.
doi:10.1109/74.997888

11. Puente-Baliarda, C., J. Romeu, R. Pous, and A. Cardama, "On the behavior of the Sierpinski multiband fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 4, 517-524, Apr. 1998.
doi:10.1109/8.664115

12. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Norwood, MA, 2003.

13. Chaudhary, R. K., V. V. Mishra, K. V. Srivastava, and A. Biswas, "Multi-layer multi-permittivity dielectric resonator: A new approach for improved spurious free window," 2010 European Microwave Conf. (EuMC), 1194-1197, Sep. 28–30, 2010.

14. Baliarda, C. P., J. Romeu, and A. Cardama, "The Koch monopole: A small fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 11, 1773-1781, Nov. 2000, Doi: 10.1109/8.900236.
doi:10.1109/8.900236

15. Krishna, D. D., M. Gopikrishna, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "Compact wideband Koch fractal printed slot antenna," IET Microwaves, Antennas & Propagation, Vol. 3, No. 5, 782-789, Aug. 2009, Doi: 10.1049/iet-map.2008.0210.
doi:10.1049/iet-map.2008.0210

16. Mahatthanajatuphat, C., S. Saleekaw, P. Akkaraekthalin, and M. Krairiksh, "A rhombic patch monopole antenna with modified minkowski fractal geometry for UMTS, WLAN, and mobile WiMAX application," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009.
doi:10.2528/PIER08111907

17. Oraizi, H. and S. Hedayati, "Circularly polarized multiband microstrip antenna using the square and Giuseppe Peano fractals," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3466-3470, Jul. 2012.
doi:10.1109/TAP.2012.2196912