Vol. 18
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-11-18
Bandwidth Improvement of Reflectarray Antennas Using Closely Spaced Elements
By
Progress In Electromagnetics Research C, Vol. 18, 19-29, 2011
Abstract
A bandwidth improvement method in reflectarray antennas by using closely space elements, i.e. unit-cell sizes smaller than λ/2, has been investigated both numerically and experimentally in this paper. A new definition of phase error has been introduced to analyze the broadband mechanism of closely spaced phasing elements. Through full wave EM simulations, it is revealed that closely spaced elements achieve a smaller phase error over the band. Based on these theoretical studies two Ka-band reflectarrays were fabricated and their performance was measured across the frequency range of 30 to 34 GHz. It is demonstrated that the reflectarray designed with closely spaced elements achieves a notable improvement in gain bandwidth performance.
Citation
Payam Nayeri, Fan Yang, and Atef Elsherbeni, "Bandwidth Improvement of Reflectarray Antennas Using Closely Spaced Elements," Progress In Electromagnetics Research C, Vol. 18, 19-29, 2011.
doi:10.2528/PIERC10091505
References

1. Pozar, D. M., S. D. Targonski, and H. D. Syrigos, "Design of millimeter wave microstrip reflectarrays," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 287-296, Feb. 1997.
doi:10.1109/8.560348

2. Huang, J. and J. A. Encinar, Reflectarray Antennas, Institute of Electrical and Electronics Engineers, John Wiley & Sons, 2008.

3. Huang, J., "Bandwidth study of microstrip reflectarray and a novel phased reflectarray concept," IEEE Antennas and Propagation Society International Symposium, California, USA, Jun. 1995.

4. Pozar, D. M., "Bandwidth of reflectarrays," Electronics Letters, Vol. 39, No. 21, Oct. 2003.

5. Bialkowski, M. E. and K. H. Sayidmarie, "Bandwidth consideration for microstrip reflectarrays," Progress In Electromagnetic Research B, Vol. 3, 173-187, 2008.
doi:10.2528/PIERB07120405

6. Encinar, J. A., "Design of two-layer printed reflectarrays using patches of variable size," IEEE Trans. Antennas Propag., Vol. 49, No. 10, 1403-14010, Oct. 2001.
doi:10.1109/8.954929

7. Chaharmir, M. R., J. Shaker, M. Cuhaci, and A. Ittipiboon, "A broadband reflectarray antenna with double square rings," Microwave and Optical Technology Letters, Vol. 48, No. 7, 1317-1320, Jul. 2006.
doi:10.1002/mop.21630

8. Li, H., B. Z. Wang, and W. Shao, "Novel broadband reflectarray antenna with compound-cross-loop elements for millimeter-wave application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1333-1340, 2007.
doi:10.1163/156939307783239528

9. Carrasco, E., M. Barba, and J. A. Encinar, "Reflectarray element based on aperture-coupled patches with slots and lines of variable length," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 820-825, Mar. 2007.
doi:10.1109/TAP.2007.891863

10. Costanzo, S., F. Venneri, and G. Di Massa, "Bandwidth enhancement of aperture-coupled reflectarrays," Electronics Letters, Vol. 42, No. 23, Nov. 2006.

11. Venneri, F., S. Costanzo, G. Di Massa, and G. Amendola, "Aperture-coupled reflectarrays with enhanced bandwidth features," Journal of Electromagnetic Waves and Applications, Vol. 22, 1527-1537, 2008.
doi:10.1163/156939308786390247

12. Carrasco, E., J. A. Encinar, and M. Barba, "Bandwidth improvement in large reflectarrays by using true-time delay," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2496-2503, Aug. 2008.
doi:10.1109/TAP.2008.927559

13. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, The Cambridge RF and Microwave Engineering Series, Cambridge University Press, 2008.
doi:10.1017/CBO9780511754531

14. Pozar, D. M., "Wideband reflectarrays using artificial impedance surfaces," Electronics Letters, Vol. 43, No. 3, Feb. 2007.
doi:10.1049/el:20073560

15. Hu, W., M. Arrebola, R. Cahill, J. A. Encinar, V. Fusco, H. S. Gamble, Y. Álvarez, and F. Las-Heras, "94 GHz dual reflector antenna with reflectarray subreflector," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3043-3050, Oct. 2009.

16. Nayeri, P., M. E. Bialkowski, and K. H. Sayidmarie, "Design of double-ring unit cells for single-layer microstrip reflectarrays," Asia Pacific Microwave Conf., Hong Kong, China, Dec. 2008.

17. Huang, J. and R. J. Pogorzelski, "A Ka-band microstrip reflectarray with elements having variable rotation angles," IEEE Trans. Antennas Propag., Vol. 46, No. 5, 650-656, May 1998.
doi:10.1109/8.668907