Vol. 152
Latest Volume
All Volumes
PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-02-04
Adaptive Hybrid Precoding for Reliable Multi-User mmWave MIMO Systems
By
Progress In Electromagnetics Research C, Vol. 152, 171-176, 2025
Abstract
Wireless communication has revolutionized modern connectivity, with millimeter-wave (mm-Wave) technology emerging as a key component of next-generation networks due to its ability to deliver fast data rates and large capacity. Hybrid precoding is an important approach in mm-Wave MIMO systems for optimizing spectral efficiency, and it relies largely on accurate channel state information (CSI). The sparse characteristic of mm-Wave channels allows compressive sensing (CS) methods to be used for efficient channel estimation, considerably lowering pilot overhead and computational complexity. This study describes a novel hybrid precoding technique designed for reliable multi-user situations. The proposed two-stage framework uses SVD-based equal-gain transmission (EGT) for analog precoding and a Kalman filter for baseband precoding to effectively reduce inter-user interference. Numerical assessments show that the EGT-Kalman precoding method is comparable with standard strategies like zero-forcing (ZF) and MMSE precoding in terms of spectral efficiency. Furthermore, the pilot overhead is calculated, indicating the efficiency of the suggested technique in reducing training requirements while maintaining performance. This study highlights the promise of adaptive precoding techniques in developing mm-Wave communication systems by providing resilient performance in stable multi-user scenarios while tackling the challenges of sparse channel estimation.
Citation
Pillala Venkata Muralikrishna, and Teppala Venkata Ramana, "Adaptive Hybrid Precoding for Reliable Multi-User mmWave MIMO Systems," Progress In Electromagnetics Research C, Vol. 152, 171-176, 2025.
doi:10.2528/PIERC24120302
References

1. Uwaechia, Anthony Ngozichukwuka and Nor Muzlifah Mahyuddin, "A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges," IEEE Access, Vol. 8, 62367-62414, 2020.

2. Rappaport, Theodore S., Yunchou Xing, George R. MacCartney, Andreas F. Molisch, Evangelos Mellios, and Jianhua Zhang, "Overview of millimeter wave communications for fifth-generation (5G) wireless networks --- With a focus on propagation models," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6213-6230, Dec. 2017.

3. Uwaechia, Anthony Ngozichukwuka, Nor Muzlifah Mahyuddin, Mohd Fadzil Ain, Nurul Muazzah Abdul Latiff, and Nor Farahidah Za’bah, "On the spectral-efficiency of low-complexity and resolution hybrid precoding and combining transceivers for mmWave MIMO systems," IEEE Access, Vol. 7, 109259-109277, Aug. 2019.

4. Hou, Shuai, Yafeng Wang, and Chao Li, "Uplink sparse channel estimation for hybrid millimeter wave massive MIMO systems by UTAMP-SBL," Sensors, Vol. 21, No. 14, 4760, 2021.
doi:10.3390/s21144760

5. Subitha, D., P. Poonkuzhali, I. Chandra, and P. Venkata Hemanth, "Hybrid precoding algorithm for massive MIMO system with imperfect channel knowledge," Materials Today: Proceedings, Vol. 80, 3235-3239, 2023.

6. Gao, Shijian, Xiang Cheng, and Liuqing Yang, "Hybrid multi-user precoding for mmWave massive MIMO in frequency-selective channels," 2020 IEEE Wireless Communications and Networking Conference (WCNC), 1-6, Seoul, Korea (South), May 2020.

7. Björnson, Emil, Luca Sanguinetti, Jakob Hoydis, and Mérouane Debbah, "Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer?," IEEE Transactions on Wireless Communications, Vol. 14, No. 6, 3059-3075, 2015.

8. Alouzi, Mohamed, Faisal Al-Kamali, Claude D’Amours, and Francois Chan, "Direct conversion of hybrid precoding and combining from full array architecture to subarray architecture for mmWave MIMO systems," IEEE Access, Vol. 11, 35457-35468, 2023.

9. Hsu, Kai-Neng, Ching-Hung Wang, Yun-Yueh Lee, and Yuan-Hao Huang, "Low complexity hybrid beamforming and precoding for 2D planar antenna array mmWave systems," 2015 IEEE Workshop on Signal Processing Systems (SiPS), 1-6, Hangzhou, China, Oct. 2015.

10. Hanif, Muhammad, Hong-Chuan Yang, Gary Boudreau, Edward Sich, and Hossein Seyedmehdi, "Low‐complexity hybrid precoding for multi‐user massive MIMO systems: A hybrid EGT/ZF approach," IET Communications, Vol. 11, No. 5, 765-771, 2017.

11. Vizziello, Anna, Pietro Savazzi, and Kaushik R. Chowdhury, "A Kalman based hybrid precoding for multi-user millimeter wave MIMO systems," IEEE Access, Vol. 6, 55712-55722, 2018.

12. Nguyen, Duy H. N., Long Bao Le, Tho Le-Ngoc, and Robert W. Heath, "Hybrid MMSE precoding and combining designs for mmWave multiuser systems," IEEE Access, Vol. 5, 19167-19181, 2017.

13. Zhang, Xue and Feng Zhao, "Hybrid precoding algorithm for millimeter-wave massive MIMO systems with subconnection structures," Wireless Communications and Mobile Computing, Vol. 2021, No. 1, 5532939, Jun. 2021.

14. Zheng, Zhong and Hamid Gharavi, "Spectral and energy efficiencies of millimeter wave MIMO with configurable hybrid precoding," IEEE Transactions on Vehicular Technology, Vol. 68, No. 6, 5732-5746, 2019.

15. Liu, Yang, Qiutong Zhang, Xin He, Xuemei Lei, Yinghui Zhang, and Tianshuang Qiu, "Spectral-efficient hybrid precoding for multi-antenna multi-user mmWave massive MIMO systems with low complexity," EURASIP Journal on Wireless Communications and Networking, Vol. 2022, No. 1, 66, 2022.

16. Boccardi, Federico, Robert W. Heath, Angel Lozano, Thomas L. Marzetta, and Petar Popovski, "Five disruptive technology directions for 5G," IEEE Communications Magazine, Vol. 52, No. 2, 74-80, Feb. 2014.

17. Abose, T. A., T. O. Olwal, and M. R. Hassen, "Hybrid beamforming for millimeter wave massive MIMO under multicell multiuser environment," Indian Journal of Science and Technology, Vol. 15, No. 20, 1001-1011, 2022.
doi:10.17485/IJST/v15i20.114

18. Rusek, Fredrik, Daniel Persson, Buon Kiong Lau, Erik G. Larsson, Thomas L. Marzetta, Ove Edfors, and Fredrik Tufvesson, "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Processing Magazine, Vol. 30, No. 1, 40-60, 2013.

19. Larsson, Erik G., Ove Edfors, Fredrik Tufvesson, and Thomas L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Communications Magazine, Vol. 52, No. 2, 186-195, 2014.

20. Rappaport, Theodore S., Shu Sun, Rimma Mayzus, Hang Zhao, Yaniv Azar, Kevin Wang, George N. Wong, Jocelyn K. Schulz, Mathew Samimi, and Felix Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 2013.

21. Rappaport, Theodore S., Robert W. Heath Jr., Robert C. Daniels, and James N. Murdock, Millimeter Wave Wireless Communications, Pearson Education, London, U.K., 2015.