Vol. 151
Latest Volume
All Volumes
PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-01-06
Three-Vector Model Predictive Current Control of Permanent Magnet Assisted Synchronous Reluctance Motor Based on Step-by-Step Parameter Identification
By
Progress In Electromagnetics Research C, Vol. 151, 177-184, 2025
Abstract
This paper addresses the susceptibility of motor parameters to external disturbances during the operation of three-vector model predictive current control (TV-MPCC) for permanent magnet-assisted synchronous reluctance motors (PMA-SynRMs), which leads to increased current fluctuations and reduced tracking precision. To enhance the control system's stability, a step-by-step parameter identification approach is proposed. First, the proposed method devises six switching configurations, considers eight potential current prediction points generated by voltage vectors, and reformulates the value function. Next, a model reference adaptive system (MRAS) is employed to incrementally identify the motor's d and q axis inductances, resistance, and flux linkage. These identified parameters are used to update the model in real time. In this study, a 3kW PMA-SynRM serves as the control object for simulation verification. Results indicate that the TV-MPCC based on step-by-step parameter identification has obvious improvement in current tracking static error and peak value of current fluctuation.
Citation
Aide Xu, Ruijie Liu, and Yubang Yu, "Three-Vector Model Predictive Current Control of Permanent Magnet Assisted Synchronous Reluctance Motor Based on Step-by-Step Parameter Identification," Progress In Electromagnetics Research C, Vol. 151, 177-184, 2025.
doi:10.2528/PIERC24110802
References

1. Jia, Shaofeng, Ping Zhang, Deliang Liang, Maocun Dai, and Jinjun Liu, "Design and comparison of three different types of efficiency machines," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 1-4, Harbin, China, 2019.

2. Cao, Hengpei, Mengmeng Ai, and Yanbo Wang, "Research status and development trend of permanent magnet assisted synchronous reluctance motor," Transactions of China Electrotechnical Society, Vol. 37, No. 18, 4575-4592, 2022.

3. Zheng, S. Y., X. Y. Zhu, L. Xu, et al., "Design and performance analysis of PM-assisted synchronous reluctance motor considering high torque-quality ratio," Chinese Journal of Electrical Engineering, Vol. 42, No. 19, 7236-7248, 2022.

4. Leuzzi, Riccardo, Paolo Cagnetta, Simone Ferrari, Paolo Pescetto, Gianmario Pellegrino, and Francesco Cupertino, "Transient overload characteristics of PM-assisted synchronous reluctance machines, including sensorless control feasibility," IEEE Transactions on Industry Applications, Vol. 55, No. 3, 2637-2648, 2019.

5. Huang, H. and Y. S. Hu, Design and Application of Permanent Magnet Assisted Synchronous Reluctance Motor, Machinery Industry Press, Beijing, 2017.

6. Chen, Yang, Bai Baodong, Chen Dezhi, et al., "Design and analysis of a variable flux permanent magnet assisted synchronous motor," Transactions of China Electrotechnical Society, Vol. 34, No. 3, 489-496, 2019.

7. Niazi, Peyman, Hamid A. Toliyat, and Abbas Goodarzi, "Robust maximum torque per ampere (MTPA) control of PM-assisted SynRM for traction applications," IEEE Transactions on Vehicular Technology, Vol. 56, No. 4, 1538-1545, 2007.

8. Davari, S. Alireza, Davood Arab Khaburi, and Ralph Kennel, "An improved FCS-MPC algorithm for an induction motor with an imposed optimized weighting factor," IEEE Transactions on Power Electronics, Vol. 27, No. 3, 1540-1551, 2012.

9. Xu, Yanping, Baocheng Zhang, and Qin Zhou, "Two-vector based model predictive current control for permanent magnet synchronous motor," Transactions of China Electrotechnical Society, Vol. 32, No. 20, 222-230, 2017.

10. Wang, C., "Research on current control strategy of permanent magnet synchronous motor with double vector model prediction," Harbin University of Science and Technology, 2022.

11. Xu, Yanping, Jibing Wang, Baocheng Zhang, and Q. Zhou, "Three-vector-based model predictive current control for permanent magnet synchronous motor," Transactions of China Electrotechnical Society, Vol. 33, No. 5, 980-988, 2018.

12. Li, Xinyue and Ralph Kennel, "General formulation of Kalman-filter-based online parameter identification methods for VSI-fed PMSM," IEEE Transactions on Industrial Electronics, Vol. 68, No. 4, 2856-2864, 2021.

13. Gao, F. Y., D. H. Luo, M. M. Li, et al., "Predictive current control of permanent magnet synchronous motor with on-line correction of mismatch parameters," Control Theory & Applications, Vol. 38, No. 05, 603-614, 2021.

14. Li, Y. J., X. Dong, H. F. Wei, et al., "Parameter identification of permanent magnet synchronous motor based on improved model reference adaptive system," Control Theory & Applications, Vol. 37, No. 09, 1983-1988, 2019.