Vol. 151
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-12-21
Fracture Detection in Bone Tissue Models Using h -Slot Shaped Transceiver Resonators
By
Progress In Electromagnetics Research C, Vol. 151, 81-89, 2025
Abstract
In this paper, a novel H-slot resonator of size 30 mm x 20 mm x 1.56 mm for fracture detection, backed with a perfect electric conductor (PEC), designed at 2.54 GHz is presented, and its performance is evaluated. Concurrently, an equivalent circuit model of the resonator is developed, and its performance coherently agrees with the CST model. The design is tested using a hybrid tissue phantom based on a second-order Debye dielectric tissue model. The detection of fractures of several thicknesses with a minimum width of 2 mm and a maximum of 10 mm was compared. Overall, the proposed design improves the detection of fractured regions in a bone with a 2 mm crack width as the smallest detectable crack size.
Citation
Wongani Moyo, Ahmed Allam, Asano Tanemasa, and Adel Bedair Abdel-Rahman, "Fracture Detection in Bone Tissue Models Using h -Slot Shaped Transceiver Resonators," Progress In Electromagnetics Research C, Vol. 151, 81-89, 2025.
doi:10.2528/PIERC24101405
References

1. Wehde, Mark, "Healthcare 4.0," IEEE Engineering Management Review, Vol. 47, No. 3, 24-28, 2019.

2. Amin, Bilal, Atif Shahzad, Lorenzo Crocco, Mengchu Wang, Martin O’Halloran, Ana González-Suárez, and Muhammad Adnan Elahi, "A feasibility study on microwave imaging of bone for osteoporosis monitoring," Medical & Biological Engineering & Computing, Vol. 59, 925-936, 2021.

3. Ghosh, Debalina and Prasant Kumar Sahu, "Osteoporosis detection with microwave signals: An investigation into natural resonance frequencies," Sensors and Actuators A: Physical, Vol. 365, 114867, 2024.

4. Khalesi, Banafsheh, Behnaz Sohani, Navid Ghavami, Mohammad Ghavami, Sandra Dudley, and Gianluigi Tiberi, "Free-space operating microwave imaging device for bone lesion detection: A phantom investigation," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2393-2397, 2020.

5. Nouri Moqadam, Aslan and Robab Kazemi, "Design of a novel dual-polarized microwave sensor for human bone fracture detection using reactive impedance surfaces," Scientific Reports, Vol. 13, No. 1, 10776, 2023.

6. Makarov, Sergey N., Gregory M. Noetscher, Seth Arum, Robert Rabiner, and Ara Nazarian, "Concept of a radiofrequency device for osteopenia/osteoporosis screening," Scientific Reports, Vol. 10, No. 1, 3540, 2020.

7. Tai, Tzu-Chun, Hung-Wei Wu, Cheng-Yuan Hung, and Yeong-Her Wang, "Food security sensing system using a waveguide antenna microwave imaging through an example of an egg," Sensors, Vol. 20, No. 3, 699, 2020.

8. Hekal, Sherif and Adel B. Abdel-Rahman, "New compact design for short range wireless power transmission at 1GHz using H-slot resonators," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-5, IEEE, 2015.

9. Pozar, D. M., Microwave Engineering, John wiley & sons, 2011.

10. De Oliveira, Alexandre Maniçoba, Antonio Mendes de Oliveira Neto, Marcelo Bender Perotoni, N. Nurhayati, Henri Baudrand, Arnaldo de Carvalho, and João Francisco Justo, "A fern antipodal vivaldi antenna for near-field microwave imaging medical applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8816-8829, 2021.

11. Brizi, Danilo, Maria Conte, and Agostino Monorchio, "A performance-enhanced antenna for microwave biomedical applications by using metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 4, 3314-3323, 2023.

12. He, Guoqing, "Dual-band and dual-polarized antenna for wearable application," 2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT), Vol. 1, 1-3, IEEE, 2018.

13. Wang, Qingmin, Ke Bi, Yanan Hao, Limin Guo, Guoyan Dong, Hongya Wu, and Ming Lei, "High-sensitivity dielectric resonator-based waveguide sensor for crack detection on metallic surfaces," IEEE Sensors Journal, Vol. 19, No. 14, 5470-5474, 2019.

14. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.

15. Sample, Alanson P., David T. Meyer, and Joshua R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 58, No. 2, 544-554, 2010.

16. Joannopoulos, John D., Aristeidis Karalis, and Marin Soljacic, "Wireless energy transfer using coupled resonators," 2010.

17. Sharquie, Khalifa E., Sabeeh A. Al-Mashhadani, Adil A. Noaimi, and Wasan B. Al-Zoubaidi, "Microwave Thermotherapy: New treatment for cutaneous leishmaniasis," Our Dermatology Online/Nasza Dermatologia Online, Vol. 6, No. 2, 2015.

18. Kucuk, Ezgi, Burak Bayram, S. Taha Imeci, and Tahsin Durak, "E-shaped patch antenna at 4.87 GHz," 2018 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, 2018.

19. Deshmukh, Amit A., Mohil Gala, and Sudesh R. Agrawal, "U-slot cut shorted square microstrip antenna," 2016 IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT), 221-225, 2016.

20. Yadav, Dinesh, "L-slotted rectangular microstrip patch antenna," 2011 International Conference on Communication Systems and Network Technologies, 220-223, 2011.

21. Burcakbas, Ahmet, Selman Soylu, Burak Bektas, and S. Taha Imeci, "Square shape patch antenna with triangular slot," 2017 International Applied Computational Electromagnetics Society Symposium --- Italy (ACES), 1-2, 2017.

22. Simo, Kerri A., Victor B. Tsirline, David Sindram, Matthew T. McMillan, Kyle J. Thompson, Ryan Z. Swan, Iain H. McKillop, John B. Martinie, and David A. Iannitti, "Microwave ablation using 915-MHz and 2.45-GHz systems: What are the differences?," HPB, Vol. 15, No. 12, 991-996, 2013.

23. Trimukhe, Mahadu A. and B. G. Hogade, "Gain enhancement of compact UWB antenna using planar reflector," 2019 International Conference on Communication and Electronics Systems (ICCES), 1444-1446, 2019.

24. Haack, Micah P., Ronald P. Jenkins, Wending Mai, Galestan Mackertich-Sengerdy, Sawyer D. Campbell, Mario F. Pantoja, and Douglas H. Werner, "Physically realizable antenna equivalent circuit generation," IEEE Access, Vol. 12, 33652-33658, 2024.

25. Hong, Jia-Shen G. and Michael J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, 2004.

26. Abdel-Rahman, Add B. and Abbass S. Omar, "Miniaturized bandpass filters using capacitor loaded folded slot coupled resonators," IEEE Middle East Conference on Antennas and Propagation (MECAP 2010), 1-4, IEEE, 2010.

27. Gabriel, Sami, R. W. Lau, and Camelia Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine & Biology, Vol. 41, No. 11, 2271, 1996.

28. Cole, Kenneth S. and Robert H. Cole, "Dispersion and absorption in dielectrics I. Alternating current characteristics," The Journal of Chemical Physics, Vol. 9, No. 4, 341-351, 1941.

29. Ireland, D. and A. Abbosh, "Optimised second-order Debye parameters for head tissues at microwave frequencies," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, IEEE, 2012.

30. Eleiwa, Mohammed A. and Atef Z. Elsherbeni, "Debye constants for biological tissues from 30 Hz to 20 GHz," Applied Computational Electromagnetics Society Journal, Vol. 16, No. 3, 202-213, 2001.

31. Ruvio, Giuseppe, Antonio Cuccaro, Raffaele Solimene, Adriana Brancaccio, Bruno Basile, and Max J. Ammann, "Microwave bone imaging: A preliminary scanning system for proof-of-concept," Healthcare Technology Letters, Vol. 3, No. 3, 218-221, 2016.

32. Santos, Kesia C., Carlos A. Fernandes, and Jorge R. Costa, "Feasibility of bone fracture detection using microwave imaging," IEEE Open Journal of Antennas and Propagation, Vol. 3, 836-847, 2022.

33. Ramalingam, Vimal Samsingh, Malathi Kanagasabai, and Esther Florence Sundarsingh, "A compact microwave device for fracture diagnosis of the human tibia," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 9, No. 4, 661-668, 2019.

34. Kerketta, Shilpi Ruchi and Debalina Ghosh, "Microwave sensing for human bone health evaluation," AEU --- International Journal of Electronics and Communications, Vol. 127, 153469, 2020.

35. Beyraghi, Sina, Fardin Ghorbani, Javad Shabanpour, Mir Emad Lajevardi, Vahid Nayyeri, Pai-Yen Chen, and Omar M. Ramahi, "Microwave bone fracture diagnosis using deep neural network," Scientific Reports, Vol. 13, No. 1, 16957, 2023.

36. Yilmaz, Tuba, Robert Foster, and Yang Hao, "Broadband tissue mimicking phantoms and a patch resonator for evaluating noninvasive monitoring of blood glucose levels," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3064-3075, 2014.

37. Redzwan, S., N. B. Asan, J. Velander, D. Lee, M. D. Perez, M. Raaben, T. J. Blokhuis, and R. Augustine, "Frequency domain analysis of hip fracture using microwave Split Ring Resonator sensor on phantom model," 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 244-247, IEEE, 2016.